Clusters-in-liquid IR identifies the proton transfer mode in acidic aqueous solution

Waldemar Kulig

The Fritz Haber Center for Molecular Dynamics The Hebrew University of Jerusalem

September 19, 2012

Protein folding

Prepared by Ai Shinobu

・ロト ・回ト ・ヨト ・ヨト

3

Source: Clapham Lab

Protein folding

Prepared by Ai Shinobu

イロト イヨト イヨト イヨト

3

Source: Clapham Lab

Acid-base reactions

Source: Jones Collage Prep

Protein folding

Prepared by Ai Shinobu

Source: Clapham Lab

Acid-base reactions

Catalysis

Source: Jones Collage Prep

・ロト ・回ト ・ヨト ・ヨト

Source: www.wikipedia.com

Banias Waterfall, Israel

The kinetics of proton in water cannot be measured experimentally

but the IR spectrum can!

A (1) < A (1)</p>

Banias Waterfall, Israel

The kinetics of proton in water cannot be measured experimentally

but the IR spectrum can!

・ロト ・回ト ・ヨト

Banias Waterfall, Israel

The kinetics of proton in water cannot be measured experimentally

but the IR spectrum can!

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

J. Kim et al. J. Chem. Phys. 116 (2002) 737

イロト イポト イヨト イヨト

J. Kim et al. J. Chem. Phys. 116 (2002) 737

イロト イヨト イヨト イヨト

IR spectrum of protonated water

IR spectrum of protonated water

J. Kim et al. J. Chem. Phys. 116 (2002) 737

< (1) > < (1) > <

Where is a signal from a proton transfer mode (PTM)?

イロト イヨト イヨト

Sharp peak at 1620 cm⁻¹ assigned to HOH bend of flanking water molecules

Headrick, J. M. et al., Science 308, 1765-1769 (2005)

Strong peak near 1080cm⁻¹ assigned previously to the PTM in symetric Zundel conformers

イロト イロト イヨト イヨ

・ロト ・回ト ・ヨト ・ヨト

3

proton in water box

Waldemar Kulig Clusters-in-liquid IR

・ロト ・回ト ・ヨト

proton in water box

IR proton in water box

・ロト ・回 ト ・ヨト ・ヨ

$$I(\omega) \approx \int dt \ e^{-i\omega t} \langle \dot{\boldsymbol{\mu}}(0) \dot{\boldsymbol{\mu}}(t) \rangle$$
$$\dot{\boldsymbol{\mu}}(t) = \sum_{i}^{N} \left(\dot{q}_{i}(t) \boldsymbol{R}_{i}(t) + q_{i}(t) \dot{\boldsymbol{R}}_{i}(t) \right)$$

The summation runs over all atoms in the system

where t - time, ω - frequency, μ - dipole moment, N - number of atoms, q - atomic charge, **R** - position of atom

water box

・ロト ・回ト ・ヨト ・ヨト

イロト イヨト イヨト イヨト

proton in water box

< A > < 3

The summation runs only over a part of a system

• • • • • • • • • • • •

where t - time, ω - frequency, μ - dipole moment, N - number of atoms, q - atomic charge, **R** - position of atom

The summation runs only over a part of a system

・ロト ・回ト ・ヨト ・ヨ

where t - time, ω - frequency, μ - dipole moment, N - number of atoms, q - atomic charge, **R** - position of atom

one simulation, no subtraction IR signal from specific part of the system

Simulation protocol

- proton and 216 water molecules
- 8 starting configurations / at least 500 ps of equilibration (NVT)
- 300K (Nose-Hoover) and 1 atm
- 8 ns 'production run' (NVE), timestep 0.5 fs
- MS-EVB3 methodology, SPC/F ω water model
- hydronium ion oxygen atom with three shortest O-H bonds
- H⁺(H₂O)_n, where n = 1, 2, 3, 4, 6, 26, clusters cut out from simulation box

$\mathrm{H^+(H_2O)_n}$ clusters

$\mathrm{H^+(H_2O)}_n$ clusters

$\mathrm{H^+(H_2O)}_n$ clusters

イロト イロト イヨト イヨ

W. Kulig and N. Agmon, A 'clusters-in-liquid' method for calculating infrared spectra identifies the proton transfer mode in acidic aqueous solution, Nature Chemistry, accepted

イロト イロト イヨト イヨ

W. Kulig and N. Agmon, A 'clusters-in-liquid' method for calculating infrared spectra identifies the proton transfer mode in acidic aqueous solution, Nature Chemistry, accepted

イロト イヨト イヨト イヨ

W. Kulig and N. Agmon, A 'clusters-in-liquid' method for calculating infrared spectra identifies the proton transfer mode in acidic aqueous solution, Nature Chemistry, accepted

イロト イヨト イヨト イヨト

W. Kulig and N. Agmon, A 'clusters-in-liquid' method for calculating infrared spectra identifies the proton transfer mode in acidic aqueous solution, Nature Chemistry, accepted

Comparison with experiment

Headrick, J. M. et al., Science 308, 1765-1769 (2005)

イロト イヨト イヨト イヨト

3

The IR signal of the excess proton corresponds to an unidentified peak at 1740 cm⁻¹of protonated gas-phase water clusters with n=2, 4, and 6

Headrick, J. M. et al., Science 308, 1765-1769 (2005)

Gaussian clusters - Zundel-like structures

イロト イヨト イヨト イヨト

Gaussian clusters - Zundel-like structures

イロト イヨト イヨト イヨト

$\rm H^+(H_2O)_6$ cluster

CP2K: BLYP/DZVP-GTH-BLYP/300Ry/50K/SIC

- \bullet IR signal of an excess proton in protonated liquid water is located near 1740 $\rm cm^{-1}$
- a signal around 1000 cm⁻¹ fades away in clusters with n > 2, which is supported both by MS-EVB3 and CP2K calculations
- proton continuum arises mostly from Eigen-like structures
- clusters-in-liquid approach is generic and could be applied to any simulation protocol that generates a charge distribution, therefore it may be useful for probing mixed solvents, interfaces, proteins and membranes.

ヘロマ ヘロマ ヘロマ

- \bullet IR signal of an excess proton in protonated liquid water is located near 1740 $\rm cm^{-1}$
- a signal around 1000 cm⁻¹ fades away in clusters with n > 2, which is supported both by MS-EVB3 and CP2K calculations
- proton continuum arises mostly from Eigen-like structures
- clusters-in-liquid approach is generic and could be applied to any simulation protocol that generates a charge distribution, therefore it may be useful for probing mixed solvents, interfaces, proteins and membranes.

ヘロト ヘヨト ヘヨト ヘヨト

- \bullet IR signal of an excess proton in protonated liquid water is located near 1740 $\rm cm^{-1}$
- a signal around 1000 cm⁻¹ fades away in clusters with n > 2, which is supported both by MS-EVB3 and CP2K calculations
- proton continuum arises mostly from Eigen-like structures
- clusters-in-liquid approach is generic and could be applied to any simulation protocol that generates a charge distribution, therefore it may be useful for probing mixed solvents, interfaces, proteins and membranes.

ヘロト ヘヨト ヘヨト ヘヨト

- \bullet IR signal of an excess proton in protonated liquid water is located near 1740 $\rm cm^{-1}$
- a signal around 1000 cm⁻¹ fades away in clusters with n > 2, which is supported both by MS-EVB3 and CP2K calculations
- proton continuum arises mostly from Eigen-like structures
- clusters-in-liquid approach is generic and could be applied to any simulation protocol that generates a charge distribution, therefore it may be useful for probing mixed solvents, interfaces, proteins and membranes.

イロト イヨト イヨト イヨト

Applications of MS-EVB methodology

water - vaccum

water - methanol

G. Voth, Acc. Chem. Res., 39 (2006) 143

40 excess protons in Nafion polymer electrolyte membrane

M2 proton channel in DMPC lipid bilayer

Acknowledgement

- Experimental results:
 - Mark A. Johnson
 - Maciej Śmiechowski
- Financial support:
 - The Minerwa Gesellschaft Für die Forschung
 - Binational Science Foundation

Thank you for attention

・ロト ・日下・ モート

MS-EVB3 clusters

CP2K: BLYP/DZVP-GTH-BLYP/300Ry/50K/SIC

Waldemar Kulig Clusters-in-liquid IR

$\mathrm{H^+(H_2O)}_n$ clusters

$\mathrm{H^+(H_2O)}_n$ clusters

イロト イヨト イヨト イヨト

4

Identity criterion

Waldemar Kulig Clusters-in-liquid IR

8 ns

▲□ ▶ ▲ 三 ▶ ▲ 三

E

8 ns

・ロト ・日ト ・ヨト

< ∃⇒

æ

・ロト ・日ト ・ヨト

・ロト ・日ト ・ヨト

<ロ> (日) (日) (日) (日) (日)

・ロト ・日ト ・ヨト

_ ∢ ≣ →

$$I(\omega)\approx\int dt\;e^{-i\omega t}\langle\dot{\mu}(0)\dot{\mu}(t)\rangle$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

$$I(\omega) \approx \int dt \; e^{-i\omega t} \langle \dot{\boldsymbol{\mu}}(0) \dot{\boldsymbol{\mu}}(t) \rangle$$

$$ACF_A = \langle \dot{\boldsymbol{\mu}}_A(0) \dot{\boldsymbol{\mu}}_A(t) \rangle$$
$$ACF_B = \langle \dot{\boldsymbol{\mu}}_B(0) \dot{\boldsymbol{\mu}}_B(t) \rangle$$

イロト イヨト イヨト イヨト

$$I(\omega) \approx \int dt \; e^{-i\omega t} \langle \dot{\boldsymbol{\mu}}(0) \dot{\boldsymbol{\mu}}(t) \rangle$$

$$ACF_A = \langle \dot{\boldsymbol{\mu}}_A(0) \dot{\boldsymbol{\mu}}_A(t) \rangle$$
$$ACF_B = \langle \dot{\boldsymbol{\mu}}_B(0) \dot{\boldsymbol{\mu}}_B(t) \rangle$$

 $\begin{aligned} ACF_{AB} &= \langle \dot{\boldsymbol{\mu}}_{AB}(0) \dot{\boldsymbol{\mu}}_{AB}(t) \rangle = \langle \dot{\boldsymbol{\mu}}_{A}(0) \dot{\boldsymbol{\mu}}_{A}(t) + \dot{\boldsymbol{\mu}}_{B}(0) \dot{\boldsymbol{\mu}}_{B}(t) \\ &+ \dot{\boldsymbol{\mu}}_{A}(0) \dot{\boldsymbol{\mu}}_{B}(t) + \dot{\boldsymbol{\mu}}_{B}(0) \dot{\boldsymbol{\mu}}_{A}(t) \rangle \end{aligned}$

<回と < 回と < 回と

$$I(\omega) \approx \int dt \; e^{-i\omega t} \langle \dot{\boldsymbol{\mu}}(0) \dot{\boldsymbol{\mu}}(t) \rangle$$

$$ACF_A = \langle \dot{\boldsymbol{\mu}}_A(0) \dot{\boldsymbol{\mu}}_A(t) \rangle$$
$$ACF_B = \langle \dot{\boldsymbol{\mu}}_B(0) \dot{\boldsymbol{\mu}}_B(t) \rangle$$

 $\begin{aligned} ACF_{AB} &= \langle \dot{\boldsymbol{\mu}}_{AB}(0) \dot{\boldsymbol{\mu}}_{AB}(t) \rangle = \langle \dot{\boldsymbol{\mu}}_{A}(0) \dot{\boldsymbol{\mu}}_{A}(t) + \dot{\boldsymbol{\mu}}_{B}(0) \dot{\boldsymbol{\mu}}_{B}(t) \\ &+ \dot{\boldsymbol{\mu}}_{A}(0) \dot{\boldsymbol{\mu}}_{B}(t) + \dot{\boldsymbol{\mu}}_{B}(0) \dot{\boldsymbol{\mu}}_{A}(t) \rangle \end{aligned}$

 $ACF_{AB} = ACF_A + ACF_B + \langle \dot{\boldsymbol{\mu}}_A(0)\dot{\boldsymbol{\mu}}_B(t) + \dot{\boldsymbol{\mu}}_B(0)\dot{\boldsymbol{\mu}}_A(t) \rangle$

(日) (日) (日) (日)

$$I(\omega) \approx \int dt \, e^{-i\omega t} \langle \dot{\boldsymbol{\mu}}(0) \dot{\boldsymbol{\mu}}(t) \rangle$$

 $ACF_{AB} = ACF_A + ACF_B + \langle \dot{\boldsymbol{\mu}}_A(0)\dot{\boldsymbol{\mu}}_B(t) + \dot{\boldsymbol{\mu}}_B(0)\dot{\boldsymbol{\mu}}_A(t) \rangle$

 $I_{AB}(\omega) \neq I_A(\omega) + I_B(\omega)$

(4回) (4回) (日)