One-Pot Synthesis of 3,4-Dihydro-2H-pyrido[1,2-a][1,3,5]triazin-2-one Derivatives from N-(2'-pyridinyl)benzoylacetamide and Nitrosobenzenes

Barbara Zaleska,*a Bartosz Trzewik,a Ewa Stodolak,a Jacek Grochowski,b Paweł Serda,b

a Department of Organic Chemistry, Jagiellonian University, ul. Romana Ingardena 3, 30–060 Kraków, Poland
b Regional Laboratory of Physicochemical Analyses and Structural Research, ul. Romana Ingardena 3, 30–060 Kraków, Poland

Fax: 48(12)6340515
E-mail: zaleska@chemia.uj.edu.pl

Abstract: A convenient way leading to fused pyrido[1,2-a][1,3,5]triazin-2-ones is described. It consists in a one-pot, two-step reaction of N-(2'-pyridinyl)benzoylacetamide with nitroso- benzenes. Reactivity of N-(2'-pyridinyl)benzoylacetamide and N-(2'-pyridinyl)acetothioacetamide with nitrosobenzene was also investigated; they undergo oxidative heterocyclization leading to [1,2,4]thiadiazolo[2,3-α]pyridine derivatives.

Key words: amides, heterocycles, pyridotriazines, thiadiazolopyridines, cycloadditions

Cyclodimerization of iso(thio)cyanates leads to pyrido[1,2-a][1,3,5]triazine-2,4-di(thi)ones. Other ways include: reaction of isocyanates or active esters of imidodicarbonic acid with 2-aminopyridine or other amidines and cyclisation of (thio)urea derivatives or their reaction with isothiocyanates. Pyrido[1,2-a][1,3,5]triazine-4-ones can be obtained from urea derivatives, e.g. by their cyclisation, or reaction of aryl isocyanate and unsymmetrical carbodiimide containing 2'-pyridine ring. There are only a few examples of syntheses of pyrido[1,2-a][1,3,5]triazine-2-(thi)ones.

It has recently been shown that N-phenyl-2-methoxy-2-phenylaminoacetothioacetamide, which was obtained as the product of the reaction of N-phenylacetothioacetamide and nitrosobenzene in methanol, is a compound of particular interest. This compound has got capacity to react as bielectrophilic system on C2 in various ways, depending on reagents and reaction conditions, and usually leading to heterocyclic systems by new rearrangements. These results encouraged us to undertake a study on reactivity of N-(2'-pyridinyl)acetocetamide 1 and N-(2'-pyridinyl) benzoylacetamide 2 with nitrosobenzenes. Products of such type of reaction had proven useful as good building blocks for constructing various heterocyclic systems.

N-(2'-pyridinyl)acetocetamide 1 furnished expected product 3a, in contrast to the reaction of N-(2'-pyridinyl)benzoylacetamide 2 with nitrosobenzenes. This reaction unexpectedly afforded pyrido[1,2-a][1,3,5]triazin-2-ones 4a-c (Scheme 1).

The interest in the pyrido[1,2-a][1,3,5]triazine system arises from its wide biological activity, which comes from its antagonistic effect upon 5-HT2 and 5-HT2a serotonin receptors. Such influence can result in: mediating coronary blood flow, decreasing mean arterial blood pressure, and the antithrombotic effect in mammals. Other disorders, for whose prophylactic or therapeutic treatment pyrido[1,2-a][1,3,5]triazines can be used, are those involving airway constriction in human or animals: asthma, emphysema, chronic bronchitis, chronic obstructive pulmonary disease, and various psychotic conditions including schizophrenia, depression, anorectic or bulimic eating disorders, and anxiety in humans.

Since 1952, when a possible approach to this system was mentioned for the first time, several general methods of synthesis of pyrido[1,2-a][1,3,5]triazines have been invented, mostly leading to their oxo derivatives.

Scheme 1

The structure of compounds 4a-c could not be completely elucidated by IR, 1H NMR, 13C NMR and MS analyses, therefore it was established by X-ray analysis.1 A perspective view of the molecule of 4a with the crystallographic numbering scheme of non-hydrogen atoms is shown in Figure 1.

The packing in the crystal structure is dominated by van der Waals interactions with only intramolecular close contacts involving the C8, H108 and N12, and C20, H120 and O1 atoms (Figure 1). These interactions are fairly strong, with D-A distances equal to 264.9(3)Å and 294.0(3)Å, respectively, and rather angular (D-H...A angles equal 104(2)º and 84(2)º). Rather than affect the packing, these intramolecular interactions tend to stabilise the molecule’s conformation. In fact, the molecular geometry is rather characteristic, because, in good approximation, all atoms lie in three planes: two planes passing through the phenyl moieties and the third one defined by the remaining atoms. Least-squares planes involving the phenyl rings are inclined to each other at an angle of 27.06(8)º, whereas they form angles of about 66º with the plane defined by the heterorings.

It is noteworthy that using 2 equiv. of the corresponding nitrosobenzene in reaction with 2 significantly increases yields of products 4a-c. This fact suggests an simultaneous attack of two molecules of nitrosobenzene on C2 of 2, with following splitting of C1–C2 and C2–C3 bonds. This results in forming corresponding carbodiimides 5a-c and 2'-pyridinylisocyanate 6 (Scheme 2).

Highly reactive intermediate symmetrical carbodiimides 5a-c spontaneously react with 2'-pyridinylisocyanate 6, formed in situ, via $[4\pi+2\pi]$ heterocycloaddition between the N=C–N=C moiety of 6 as 4π component and the C=N moiety of 5a-c as 2π component to yield pyrido[1,2-a][1,3,5]triazin-4-ones as major products. At the same time dimerisation of carbodiimide occurs, leading to four-membered ring of 1,3-diazetine. The corresponding 1,3-diaryl-2,4-diarylimino-1,3-diazetines 7a-c were isolated by chromatography of reaction mixtures remaining after separating the main products 4a-c which did not need purification. Another fact that confirms the proposed $[4\pi+2\pi]$ cycloaddition mechanism is (4Z) configuration of compounds 4a-c.

Previously reported methods5c,d using $[4\pi+2\pi]$ heterocycloaddition lead mostly to pyrido[1,2-a][1,3,5]triazin-4-ones, because the pyridine ring was a part of carbodiimide, not isocyanate.

Under the same conditions N-(2'-pyridinyl)acetothioacetamide 8 and N-(2'-pyridinyl)benzoylthioacetamide 9 underwent oxidative cyclization by the treatment with nitrosobenzene. Oxidative ring closure of 8 takes place between the nitrogen atom of the pyridine ring and the sulphur atom of the thioamide moiety forming a 1,2,4-thiadiazolo[2,3-a]pyridine derivative 10 with elimination of the acetyl fragment. In this case, however, using of 2 equiv. of nitrosobenzene did not increase the yield. The structure of compound 10 was established on the basis of IR, 13C NMR, 1H NMR, and MS analyses and micro-
analysis. On the other hand \(N-(2'\text{-pyridyl})\text{benzoylthioacetamide} \) 9 gave known 1-phenyl-2-(2H-[1,2,4]thiadiazol[2,3-\(a\)]pyridin-2-ylidene)ethane \(11 \) \(^{12a}\) (Scheme 3). Such oxidation is a common way of obtaining \([1,2,4] \)thiadiazolo[2,3-\(a\)]pyridine derivatives \(^{13a,b,c}\) which constitute a new family of potassium channel openers,\(^{13b}\) and exhibit excellent endothelin receptor antagonistic activity.\(^{13d}\) They are also a subject of theoretical research.\(^{13c,e}\)

![Scheme 3](image)

In conclusion, we have demonstrated a convenient one-pot preparation of (4Z)-3-phenyl-4-(phenylimino)-3,4-dihydro-2\(H\)-pyrido[1,2-\(a\)][1,3,5]triazin-2-ones 4; General Procedure

A solution of ethyl acetylacetate (17.3 mL, 0.1 mol) in xylene (70 mL) was warmed up to boil. To the boiling mixture 2-aminopyridine (9.4 g, 0.1 mol) was added in portions during 1 h, and the liberated EtOH was distilled. Then 20 mL of xylene were distilled. Cooling the mixture at 0 °C yielded the product, which was separated under reduced pressure.

Yield 80%, colorless needles; mp 113–114 °C. (Lit.\(^{12e}\) mp 113–114 °C).

\(N-(2'\text{-pyridyl})\text{benzoylacetamide} \) 2

2 was prepared in an analogous way as 1, starting from ethyl benzoylacetate.

Yield 73%; colorless needles; mp 114–115 °C. (Lit.\(^{12e}\) mp 113–114 °C).

\(N-(2'\text{-pyridyl})\text{-2-methoxy-2-phenylaminoacetoacetamide} \) 3

To a stirred solution of 1 (1.78 g, 0.01 mol) in MeOH (20 mL), nitrosobenze (1.07 g, 0.01 mol) and solid NaOH (0.02 g) (as a catalyst) were added and the mixture was stirred overnight. The product was filtered off under reduced pressure.

Yield: 1.80 g (60%); white powder; mp 152–153 °C.

IR (KBr): \(\delta \) = 3363, 3108, 1683 cm\(^{-1}\).

\(^{1}\)H NMR (CDCl\(_3\)): \(\delta = 11.75 \) (s, 1 H, CONH), 8.20–7.01 (m, 9 H, CH ar.), 4.74 (s, 1 H, NH), 3.46 (s, 3 H, OCH\(_3\)), 2.44 (s, 3 H, CH\(_3\)).

\(^{13}\)C NMR (CDCl\(_3\)): \(\delta = 204.2 \) (COCH\(_3\)), 168.2 (CONH), 148.1, 138.4, 129.2, 128.9, 124.8, 123.5, 121.3, 120.7, 114.6 (9 C ar.), 92.8 (C-2), 50.7 (OCH\(_3\)), 22.6 (CH\(_3\)).

MS (ESI): \(m/\zeta \) (%) = 225 (12, M\(^{+}\)-Ph), 121 (97, 2-PyNHCO), 93 (84, 2-PyNH), 77 (100, Ph).

Anal. Calcd for C\(_{16}\)H\(_{17}\)N\(_2\)Os: C, 64.20; H, 5.72; N, 14.04. Found: C, 64.55; H, 5.50; N, 13.77.

(4Z)-3-arylimino-3,4-dihydro-2\(H\)-pyrido[1,2-\(a\)][1,3,5]triazin-2-ones 4; General Procedure

Compound 2 (0.48 g, 2 mmol) was dissolved in methanol (20 mL) at 40 °C and one drop of 25% water solution of NaOH (as a catalyst) were added. To the stirred solution, the corresponding nitrosobenzene was added (4 mmol) in several portions during 5 mins. The nitrosobenzene dissolved readily in the solution, which changed its color from green to orange-brown. The product was separated under reduced pressure after 2 h.

Physical data: Mps were determined on an electrothermal IA9000 digital mp apparatus and are uncorrected. IR spectra were obtained on a Bruker IFS 48 spectrometer. \(^{1}\)H and \(^{13}\)C NMR spectra were recorded with a Bruker AMX 500 NMR spectrometer at r.t.

Yield: 1.80 g (60%); white powder; mp 152–153 °C.

IR (KBr): \(\delta \) = 3363, 3108, 1683 cm\(^{-1}\).

\(^{1}\)H NMR (CDCl\(_3\)): \(\delta = 11.75 \) (s, 1 H, CONH), 8.20–7.01 (m, 9 H, CH ar.), 4.74 (s, 1 H, NH), 3.46 (s, 3 H, OCH\(_3\)), 2.44 (s, 3 H, CH\(_3\)).

\(^{13}\)C NMR (CDCl\(_3\)): \(\delta = 204.2 \) (COCH\(_3\)), 168.2 (CONH), 148.1, 138.4, 129.2, 128.9, 124.8, 123.5, 121.3, 120.7, 114.6 (9 C ar.), 92.8 (C-2), 50.7 (OCH\(_3\)), 22.6 (CH\(_3\)).

MS (ESI): \(m/\zeta \) (%) = 225 (12, M\(^{+}\)-Ph), 121 (97, 2-PyNHCO), 93 (84, 2-PyNH), 77 (100, Ph).

Anal. Calcd for C\(_{16}\)H\(_{17}\)N\(_2\)Os: C, 64.20; H, 5.72; N, 14.04. Found: C, 64.55; H, 5.50; N, 13.77.
(4Z)-3-phenyl-4-(phenylimino)-3,4-dihydro-2H-pyrido[1,2-α][1,3,5]triazin-2-one 4a
Yield 0.33 g (52%); orange plates; mp 231–232 °C.

IR (KBr): 1703, 1648, 1553 cm$^{-1}$.

1H NMR (DMSO-d$_6$): δ = 8.88 (ddd, 1 H, $J = 8.5, 1.0, 1.0$ Hz), 7.86 (t, 1 H, $J = 7.5$ Hz), 7.41 (tt, 2 H, $J = 7.5, 1.5$ Hz), 6.90 (t, 2 H, $J = 8.0$ Hz), 6.87 (d, 2 H, $J = 8.0$ Hz), 6.24 (d, 2 H, $J = 8.0$ Hz), 2.44 (s, 3 H, 2 CH$_3$), 2.42 (s, 3 H, 2 CH$_3$).

13C NMR (DMSO-d$_6$): δ = 154.6, 152.4, 143.7, 141.6, 135.9, 135.0, 132.2, 131.7, 130.1, 127.9, 127.4, 125.3, 122.9, 122.4, 112.7.

MS (EI): m/z (%) = 314 (2, M$^+$), 222 (35, M$^+$ – PhN), 194 (100, retro Diels-Alder reaction fragment (RDA)), 120 (4, RDA).

Anal. Calcd for C$_{19}$H$_7$N$_2$O: C, 72.60; H, 4.49; N, 17.82. Found: C, 72.48; H, 4.46; N, 17.74.

Yield 30%; pale yellow needles; mp 155–156 °C.

1H NMR (CDCl$_3$): δ = 8.18 (d, 4 H, $J = 8.5$ Hz), 8.11 (d, 4 H, $J = 8.5$ Hz) 7.29 (d, 4 H, $J = 8.5$ Hz), 7.28 (d, 4 H, $J = 8.5$ Hz), 2.44 (s, 6 H, 2 CH$_3$), 2.42 (s, 3 H, 2 CH$_3$).

13C NMR (CDCl$_3$): δ = 141.9, 141.9, 140.0, 129.3, 129.3, 125.6, 122.2, 21.5, 21.3.

N-(2'-pyridinyl)acetothioacetamide 8 and N-(2'-pyridinyl)benzothioacetamide 9
Compounds 8 and 9 was prepared according to the known procedure.$^{12a-d}$

N-(2'-pyridinyl)acetothioacetamide 8
Yield 42%; light yellow needles; mp 84–86 °C (Lit.12a mp 83.5–84 °C).

N-(2'-pyridinyl)benzothioacetamide 9
Yield 35%; yellow needles; mp 90–91 °C (Lit.12a mp 91–92 °C).

N,N'-diphenyl-1,2-bis-[1,2,4]thiadiazolo[2,3-a]pyridin-2-ylidene-1,2-diamine 10
To a stirred solution of 5 (0.29 g, 1.5 mmol) in MeOH (5 mL) nitrosobenzene (0.16 g, 1.5 mmol) and one drop of 25% water solution of NaOH (as a catalyst) were added. The product was filtered off under reduced pressure after 2 h.

Yield 39%; white powder; mp 234–235 °C (dec.).

IR (KBr) = 3348, 3317, 1629, 1600, 1564, 1546, 1496 cm$^{-1}$.

1H NMR (DMSO-d$_6$): δ = 8.67 (s, 2 H, 2 NH), 7.86 (dt, 2 H, $J = 7.0, 1.0$ Hz), 7.71 (dt, 2 H, $J = 9.0, 1.0$ Hz), 7.41 (ddd, 2 H, $J = 9.0, 7.0, 1.0$ Hz), 7.09 (d, 2 H, $J = 8.0$ Hz), 7.00 (dd, 2 H, $J = 7.0, 1.0$ Hz), 6.73 (tt, 2 H, $J = 7.2, 1.0$ Hz), 6.45 (dt, 4 H, $J = 7.5, 1.0$ Hz).

13C NMR (DMSO-d$_6$): δ = 144.8, 141.9, 132.2, 129.2, 125.9, 125.5, 123.5, 119.0, 117.1, 113.6, 113.0.

MS (EI): m/z (%) = 238 [100, (1/2M$^+$–2H)], 137 [29, C$_9$H$_7$N$_2$S (thiadiazolopyridine moiety)+1].
Anal. Calcd for C_{19}H_{28}N_{2}S_{2}: C, 64.98; H, 4.19; N, 17.49. Found: C, 64.76; H, 4.18; N, 17.39.

1-phenyl-2-[(2H-|1,2,4|thiadiazolo[2,3-α]pyridin-2-ylidene)ethanone 11

To a stirred solution of 6 (0.51 g, 2 mmol) in MeOH (30 mL) nitrosobenzene (0.21 g, 2 mmol) was added. After 2 h the product was filtered off under reduced pressure and recrystallized from cyclohexane.

Yield 54%; pale yellow needles; mp 229–231 °C. (Lit. 229 °C).

IR (KBr), 1H NMR, 13C NMR and MS (EI) analyses and Anal. Calcd for C_{19}H_{10}N_{2}O agree with the known data for 11. 12

References

(11) Compound 4a with formula C_{19}H_{10}N_{2}O crystallises in the monoclinic system, space group P2_1/c, with unit cell parameters a=1558.71(5), b=1313.37(3), c=727.70(2) Å, β=83.728(1)°, V=1.50108(7)x10^{6} pm³, Z=4. The X-ray diffraction data were collected on a KappaCCD Bruker-Nonius) single-crystal diffractometer using MoKα radiation (55 kV, 30 mA). A total of 11584 reflections were collected and merged to give 3004 independent reflections (R(int) = 0.051) on a single-crystal sample (size 0.3x0.2x0.15 mm). The structure was solved in space group P2_1/c by direct methods using the SHELXS86 program and refined by full-matrix least-squares method with SHELXL97. The different Fourier map of electron density was featureless with no chemically significant peaks. All hydrogen atoms were located on a difference Fourier map of electron density. Final R indices for I>2σ(I) were equal to R1 = 0.055, wR2 = 0.109, and R1 = 0.0856, wR2 = 0.1240 for all data. The final difference Fourier map of electron density was featureless with the largest peak and hole at 1.7x10^{-2} and -1.5x10^{-3} e.pm³, respectively. The structural data have been deposited at the Cambridge Crystallographic Data Centre under the reference number CCDC

One-Pot Synthesis of 3,4-Dihydro-2H-pyrido[1,2-a] [1,3,5]triazin-2-one Derivatives from N-(2'-pyridinyl) benzoylacetamide and Nitrosobenzenes

B. Zaleska,* B. Trzewik, E. Stodolak, J. Grochowski, P. Serda

![Reaction Scheme]

Ar-NO

in CH$_2$OH

40 °C, 2 h

N

N

O

N

Ar