eddb.pl

Dariusz W. Szczepanik1,2

1  Department of Theoretical Chemistry, Jagiellonian University
    Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
2  Institute of Computational Chemistry and Catalysis, University of Girona
    C/ Maria Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain



  Covers

       

  Short list of publications without abstracts

  1. All-metal Baird aromaticity
    D. Chen, D.W. Szczepanik, J. Zhu, M. Solà
    Chemical Communications  56 (2020) in press. DOI: 10.1039/D0CC05586G.  
     URL 

  2. Probing the origin of adaptive aromaticity in 16-valence-electron metallapentalenes.  Hot paper 
    D. Chen, D.W. Szczepanik, J. Zhu, M. Solà
    Chemistry - A European Journal  26 (2020) in press. DOI: 10.1002/chem.202001830.   URL 

  3. Resonance assisted hydrogen bonding phenomenon unveiled from both experiment and theory − An example of new family of ethyl N-salicylideneglycinate dyes
    D.S. Shapenova, A.N. Zvezda, A.A Shiryaev, M. Bolte, M. Kukulka, D.W. Szczepanik, J. Hooper, M.G. Babashkina, G. Mahmoudi, M.P. Mitoraj, ...
    Chemistry - A European Journal  26 (2020) in press. DOI: 10.1002/chem.202001551.   URL 

  4. Origin of hydrocarbons stability from computational perspective − A case study of xylene isomers.
    M.P. Mitoraj, F. Sagan, D.W. Szczepanik, J. Lange, A. Ptaszek, D.M.E. Niekerk, I. Cukrowski
    ChemPhysChem  21 (2020) 494−502. DOI: 10.1002/cphc.202000066.   URL 

  5. Tuning the strength of the resonance-assisted hydrogen bond in acenes and phenacenes with two o-hydroxyaldehyde groups. The importance of topology.
    G. Pareras, D.W. Szczepanik, M. Duran, M. Solà, S. Simon
    Journal of Organic Chemistry  84 (2019) 15538−15548. DOI: 10.1021/acs.joc.9b02526.  
     URL 

  6. Electron delocalization in planar metallacycles: Hückel or Möbius aromatic?
    D.W. Szczepanik (), M. Solà
    ChemistryOpen  8 (2019) 219−227. DOI: 10.1002/open.201900014.   URL 

  7. Structural versatility of the quasi-aromatic Möbius type zinc(II)-pseudohalide complexes − experimental and theoretical investigations.
    M.P. Mitoraj, F. Afkhami, G. Mahmoudi, A. Khandar, A. Gurbanov, F. Zubkov, R. Waterman, M. Babashkina, D.W. Szczepanik, H. Jena, D.A. Safin
    RSC Advances  9 (2019) 23764−23773. DOI: 10.1039/c9ra05276c.    URL 
    RSC Advances  9 (2019) 26547−26547. DOI: 10.1039/c9ra90062d.    URL   (Correction)

  8. The chameleon-like nature of anagostic interactions and its impact on metalloaromaticity in square-planar nickel complexes.
    M.P. Mitoraj, M.G. Babashkina, K. Robeyns, F. Sagan, D.W. Szczepanik, Y. Garcia, D.A. Safin
    Organometallics  38 (2019) 1973−1981. DOI: 10.1021/acs.organomet.9b00062.   URL 

  9. Effect of solvent on the structural diversity of quasi-aromatic Möbius cadmium(II) complexes fabricated from the bulky N6 tetradentate helical ligand.
    M.P. Mitoraj, G. Mahmoudi, F. Afkhami, A. Castineiras, G. Giester, I. Konyaeva, A.A. Khandar, F. Qu, A. Gupta, F. Sagan, D.W. Szczepanik, D.A. Safin
    Crystal Growth Design  19 (2019), 1649−1659. DOI: 10.1021/acs.cgd.8b01569.   URL 

  10. A simple alternative for the pseudo-π method.
    D.W. Szczepanik ()
    International Journal of Quantum Chemistry  118 (2018) e25696. DOI: 10.1002/qua.25696.  
     URL 

  11. Aromaticity of acenes: the model of migrating π-circuits.
    D.W. Szczepanik (), M. Solà, T.M. Krygowski, H. Szatylowicz, M. Andrzejak, B. Pawelek, J. Dominikowska, M. Kukulka, K. Dyduch
    Physical Chemistry Chemical Physics  20 (2018) 13430−13436. DOI: 10.1039/c8cp01108g.   URL 

  12. Quasi-aromatic Möbius metal chelates.
    G. Mahmoudi, F. Afkhami, A. Castineiras, I. Garcia-Santos, A. Gurbanov, F.I. Zubkov, M.P. Mitoraj, M. Kukulka, F. Sagan, D.W. Szczepanik, ...
    Inorganic Chemistry  57 (2018) 4395−4408. DOI: 10.1021/acs.inorgchem.8b00064.   URL 

  13. The electron density of delocalized bonds (EDDB) applied for quantifying aromaticity.
    D.W. Szczepanik (), M. Andrzejak, J. Dominikowska, B. Pawełek, T.M. Krygowski, H. Szatylowicz, M. Solà
    Physical Chemistry Chemical Physics  19 (2017) 28970−28981. DOI: 10.1039/c7cp06114e.  
     URL 

  14. The role of the long-range exchange corrections in the description of electron delocalization in aromatic species.
    D.W. Szczepanik (), M. Solà, M. Andrzejak, B. Pawełek, J. Dominikowska, M. Kukułka, K. Dyduch, T.M. Krygowski, H. Szatylowicz
    Journal of Computational Chemistry  38 (2017) 1640−1654. DOI: 10.1002/jcc.24805.   URL 

  15. From quantum superposition to orbital communication.
    D.W. Szczepanik (), E.J. Zak, J. Mrozek
    Computational and Theoretical Chemistry  1115 (2017) 80−87. DOI: 10.1016/j.comptc.2017.05.041.   URL 

  16. On the three-center orbital projection formalism within the electron density of delocalized bonds method.
    D.W. Szczepanik ()
    Computational and Theoretical Chemistry  1100 (2017), 13−17. DOI: 10.1016/j.comptc.2016.12.003.   URL 

  17. A new perspective on quantifying electron localization and delocalization in molecular systems.
    D.W. Szczepanik ()
    Computational and Theoretical Chemistry  1080 (2016) 33−37. DOI: 10.1016/j.comptc.2016.02.003.  
     URL 

  18. The lowest triplet states of bridged cis-2,2'-bithiophenes - theory vs experiment.
    M. Andrzejak, D.W. Szczepanik, Ł. Orzeł
    Physical Chemistry Chemical Physics  17 (2015) 5328−5337. DOI: 10.1039/c4cp03327b.  
     URL 

  19. A uniform approach to the description of multicenter bonding.
    D.W. Szczepanik (), M. Andrzejak, K. Dyduch, E.J. Zak, M. Makowski, G. Mazur, J. Mrozek,
    Physical Chemistry Chemical Physics  16 (2014) 20514−20523. DOI: 10.1039/c4cp02932a.  
     URL 

  20. Electron delocalization index based on bond order orbitals.
    D.W. Szczepanik (), E.J. Zak, K. Dyduch, J. Mrozek
    Chemical Physics Letters  593 (2014) 154−159. DOI: 10.1016/j.cplett.2014.01.006.   URL 

  21. Probabilistic models of the chemical bond in the function spaces.
    D.W. Szczepanik (supervisor: J. Mrozek)
    PhD Thesis, Jagiellonian University (2013). DOI: 10.13140/RG.2.2.19414.55368.  
     PDF 

  22. Through-space and through-bridge interactions in the correlation analysis of chemical bonds.
    D.W. Szczepanik (), J. Mrozek
    Computational and Theoretical Chemistry  1026 (2013) 72−77. DOI: 10.1016/j.comptc.2013.10.015.   URL 

  23. Nucleophilicity index based on atomic natural orbitals.
    D.W. Szczepanik (), J. Mrozek
    Journal of Chemistry  2013 (2013) 684134 (1−6). DOI: 10.1155/2013/684134.   URL 

  24. Minimal set of molecule-adapted atomic orbitals from maximum overlap criterion.
    D.W. Szczepanik (), J. Mrozek
    Journal of Mathematical Chemistry  51 (2013) 2687−2698. DOI: 10.1007/s10910-013-0230-z.   URL 

  25. Ground-state projected covalency index of the chemical bond.
    D.W. Szczepanik (), J. Mrozek
    Computational and Theoretical Chemistry  1023 (2013) 83−87. DOI: 10.1016/j.comptc.2013.09.008.   URL 

  26. On quadratic bond-order decomposition within molecular orbital space.
    D.W. Szczepanik (), J. Mrozek
    Journal of Mathematical Chemistry  51 (2013) 1619−1633. DOI: 10.1007/s10910-013-0169-0.   URL 

  27. Stationarity of electron distribution in ground-state molecular systems.
    D.W. Szczepanik (), J. Mrozek
    Journal of Mathematical Chemistry  51 (2013) 1388−1396. DOI: 10.1007/s10910-013-0153-8.   URL 

  28. On several alternatives for Löwdin orthogonalization.
    D.W. Szczepanik (), J. Mrozek
    Computational and Theoretical Chemistry  1008 (2013) 15−19. DOI: 10.1016/j.comptc.2012.12.013.   URL 

  29. Electron population analysis using a reference minimal set of atomic orbitals.
    D.W. Szczepanik (), J. Mrozek
    Computational and Theoretical Chemistry  996 (2012) 103−109. DOI: 10.1016/j.comptc.2012.07.021.  
     URL 

  30. Symmetrical orthogonalization within linear space of molecular orbitals.
    D.W. Szczepanik (), J. Mrozek
    Chemical Physics Letters  521 (2012) 157−160. DOI: 10.1016/j.cplett.2011.11.047.   URL 

  31. Basis set dependence of molecular information channels and their entropic bond descriptors.
    R.F. Nalewajski, D.W. Szczepanik, J. Mrozek
    Journal of Mathematical Chemistry  50 (2012) 1437−1457. DOI: 10.1007/s10910-012-9982-0.   URL 

  32. Probing the interplay between multiplicity and ionicity of the chemical bond.
    D.W. Szczepanik (), J. Mrozek
    Journal of Theoretical and Computational Chemistry  10 (2011) 471−482. DOI: 10.1142/s021963361100658x.  
     URL 

  33. Entropic bond descriptors from separated output-reduced communication channels in AO-resolution.
    D.W. Szczepanik (), J. Mrozek
    Journal of Mathematical Chemistry  49 (2011) 562−575. DOI: 10.1007/s10910-010-9763-6.   URL 

  34. Bond differentiation and orbital decoupling in the orbital-communication theory of the chemical bond.
    R.F. Nalewajski, D.W. Szczepanik, J. Mrozek
    Advances in Quantum Chemistry vol. 61 (ed. J.R. Sabin, E. Brandas), Chapter 1 (pp. 1−48), Elsevier, 2011.   URL 

  35. Entropic bond indices from information theory.
    D.W. Szczepanik (supervisor: J. Mrozek)
    MSc Thesis, Jagiellonian University (2008). DOI: 10.13140/RG.2.2.34514.04807.  
     PDF 


 
 
 
 
 
 

Last update:   2020-04-18