eddb.info

Dariusz W. Szczepanik

K. Guminski Department of Theoretical Chemistry
Faculty of Chemistry, Jagiellonian University
Gronostajowa 2, 30-387 Krakow, Poland
  (+48) 12 379 49 79    live:dszczpnk
  dszczpnk@gmail.com



PL  Peer-Reviewed Articles

  1. A simple alternative for the pseudo-π method.
    D.W. Szczepanik ()
    Int. J. Quantum Chem. 118 (2018) e25696. DOI: 10.1002/qua.25696.   URL 
  2. Aromaticity of acenes: the model of migrating circuits.
    D.W. Szczepanik (), M. Solà, T.M. Krygowski, H. Szatylowicz, M. Andrzejak, B. Pawelek, J. Dominikowska, M. Kukulka, K. Dyduch
    Phys. Chem. Chem. Phys. 20 (2018) 13430−13436. DOI: 10.1039/c8cp01108g.   URL 
  3. Quasi-aromatic Möbius metal chelates.
    G. Mahmoudi, F. Afkhami, A. Castineiras, I. Garcia-Santos, A. Gurbanov, F.I. Zubkov, M.P. Mitoraj, M. Kukulka, F. Sagan,
    D.W. Szczepanik, I.A. Konyaeva, D.A. Safin, Inorg. Chem. 57 (2018) 4395−4408. DOI: 10.1021/acs.inorgchem.8b00064.   URL 
  4. The electron density of delocalized bonds (EDDB) applied for quantifying aromaticity.
    D.W. Szczepanik (), M. Andrzejak, J. Dominikowska, B. Pawełek, T.M. Krygowski, H. Szatylowicz, M. Solà
    Phys. Chem. Chem. Phys. 19 (2017) 28970−28981. DOI: 10.1039/c7cp06114e.   URL 
  5. The role of the long-range exchange corrections in the description of electron delocalization in aromatic species.
    D.W. Szczepanik (), M. Solà, M. Andrzejak, B. Pawełek, J. Dominikowska, M. Kukułka, K. Dyduch, T.M. Krygowski, H. Szatylowicz
    J. Comput. Chem. 38 (2017) 1640−1654. DOI: 10.1002/jcc.24805.   URL 
  6. From quantum superposition to orbital communication.
    D.W. Szczepanik (), E.J. Zak, J. Mrozek
    Comput. Theor. Chem. 1115 (2017) 80−87. DOI: 10.1016/j.comptc.2017.05.041.   URL 
  7. On the three-center orbital projection formalism within the electron density of delocalized bonds method.
    D.W. Szczepanik ()
    Comput. Theor. Chem. 1100 (2017), 13−17. DOI: 10.1016/j.comptc.2016.12.003.   URL 
  8. A new perspective on quantifying electron localization and delocalization in molecular systems.
    D.W. Szczepanik ()
    Comput. Theor. Chem. 1080 (2016) 33−37. DOI: 10.1016/j.comptc.2016.02.003.   URL 
  9. The lowest triplet states of bridged cis-2,2'-bithiophenes - theory vs experiment.
    M. Andrzejak, D.W. Szczepanik, Ł. Orzeł
    Phys. Chem. Chem. Phys. 17 (2015) 5328−5337. DOI: 10.1039/c4cp03327b.   URL 
  10. A uniform approach to the description of multicenter bonding.
    D.W. Szczepanik (), M. Andrzejak, K. Dyduch, E.J. Zak, M. Makowski, G. Mazur, J. Mrozek,
    Phys. Chem. Chem. Phys. 16 (2014) 20514−20523. DOI: 10.1039/c4cp02932a.   URL 
  11. Electron delocalization index based on bond order orbitals.
    D.W. Szczepanik (), E.J. Zak, K. Dyduch, J. Mrozek
    Chem. Phys. Lett. 593 (2014) 154−159. DOI: 10.1016/j.cplett.2014.01.006.   URL 
  12. Through-space and through-bridge interactions in the correlation analysis of chemical bonds.
    D.W. Szczepanik (), J. Mrozek
    Comput. Theor. Chem. 1026 (2013) 72−77. DOI: 10.1016/j.comptc.2013.10.015.   URL 
  13. Nucleophilicity index based on atomic natural orbitals.
    D.W. Szczepanik (), J. Mrozek
    J. Chem. 2013 (2013) 684134 (1−6). DOI: 10.1155/2013/684134.   URL 
  14. Minimal set of molecule-adapted atomic orbitals from maximum overlap criterion.
    D.W. Szczepanik (), J. Mrozek
    J. Math. Chem. 51 (2013) 2687−2698. DOI: 10.1007/s10910-013-0230-z.   URL 
  15. Ground-state projected covalency index of the chemical bond.
    D.W. Szczepanik (), J. Mrozek
    Comput. Theor. Chem. 1023 (2013) 83−87. DOI: 10.1016/j.comptc.2013.09.008.   URL 
  16. On quadratic bond-order decomposition within molecular orbital space.
    D.W. Szczepanik (), J. Mrozek
    J. Math. Chem. 51 (2013) 1619−1633. DOI: 10.1007/s10910-013-0169-0.   URL 
  17. Stationarity of electron distribution in ground-state molecular systems.
    D.W. Szczepanik (), J. Mrozek
    J. Math. Chem. 51 (2013) 1388−1396. DOI: 10.1007/s10910-013-0153-8.   URL 
  18. On several alternatives for Löwdin orthogonalization.
    D.W. Szczepanik (), J. Mrozek
    Comput. Theor. Chem. 1008 (2013) 15−19. DOI: 10.1016/j.comptc.2012.12.013.   URL 
  19. Electron population analysis using a reference minimal set of atomic orbitals.
    D.W. Szczepanik (), J. Mrozek
    Comput. Theor. Chem. 996 (2012) 103−109. DOI: 10.1016/j.comptc.2012.07.021.   URL 
  20. Symmetrical orthogonalization within linear space of molecular orbitals.
    D.W. Szczepanik (), J. Mrozek
    Chem. Phys. Lett. 521 (2012) 157−160. DOI: 10.1016/j.cplett.2011.11.047.   URL 
  21. Basis set dependence of molecular information channels and their entropic bond descriptors.
    R.F. Nalewajski, D.W. Szczepanik, J. Mrozek
    J. Math. Chem. 50 (2012) 1437−1457. DOI: 10.1007/s10910-012-9982-0.   URL 
  22. Probing the interplay between multiplicity and ionicity of the chemical bond.
    D.W. Szczepanik (), J. Mrozek
    J. Theor. Comput. Chem. 10 (2011) 471−482. DOI: 10.1142/s021963361100658x.   URL 
  23. Entropic bond descriptors from separated output-reduced communication channels in AO-resolution.
    D.W. Szczepanik (), J. Mrozek
    J. Math. Chem. 49 (2011) 562−575. DOI: 10.1007/s10910-010-9763-6.   URL 

PL  Book Chapters

  1. Bond differentiation and orbital decoupling in the orbital-communication theory of the chemical bond.
    R.F. Nalewajski, D.W. Szczepanik, J. Mrozek
    Adv. Quantum Chem. 61 (2011) 1−48 (Chapter 1). DOI: 10.1016/B978-0-12-386013-2.00001-2.   URL 

PL  MSc/PhD Theses

PL  Other







Last update:   2018-01-09