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Abstract

Ž . Ž .A recently developed density functional theory DFT ansatz for the calculation of one-electron spin–orbit SO
corrections to NMR chemical shifts has been extended to include two-electron SO operators. The performance of different
approximations is evaluated in calculations of 1H and 13C nuclear shieldings in the hydrogen halides, the halomethanes, and
in iodobenzene. Two-electron contributions are significant relative to the one-electron contributions for fluorine substituents
Ž . Ž .ca. 30–35% but decrease for the heavier halogens ca. 6–7% for iodine . A mean-field approximation to the two-electron
SO integrals performs excellently, with negligible deviations from the ‘exact’ results, thus opening the way to calculations
on large systems. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The importance of relativistic effects on NMR properties has recently received increased attention, as both
Ž . Ž .scalar spin-free relativistic effects and spin–orbit SO coupling have to be considered for compounds

w xcontaining heavy atoms 1 . In particular, SO-induced heavy-atom effects on NMR chemical shifts have been
studied in some detail. They may affect significantly even the nuclear shieldings of light atoms bound to heavier

w xatoms like Br or I 2–7 .
w xWhile early investigations of SO effects on chemical shifts were based on semi-empirical methods 8 more

Ž . w xrecently approaches based on density functional theory DFT 2,3,6,7 or on the Hartree–Fock approximation

1 Corresponding author. E-mail: kaupp@vsibm1.mpi-stuttgart.mpg.de
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w x4,5 have been implemented and applied. Most calculations included only the one-electron SO operator
w x w x2–4,6,7 , or an effective one-electron SO operator in conjunction with a pseudopotential treatment 5 . The
importance of the two-electron SO contributions for a reliable calculation of NMR chemical shifts has thus
remained unclear. Here we report on the explicit implementation of two-electron SO integrals in the DFT-based
deMon–NMR code, as well as on validation calculations for the 1H shifts in the hydrogen halides and for the
13C shifts in the halogenomethanes.

The explicit calculation of all two-electron SO matrix elements quickly becomes very demanding computa-
Ž .tionally with respect to both disk space and computer time with increasing system size. We have therefore also

w ximplemented and tested a mean-field approximation to the two-electron SO integrals 9 . This mean-field
method has been applied successfully to SO energy splittings in SO CI calculations. It is of interest to evaluate
its performance in the context of DFT calculations of NMR chemical shifts. It is hoped that this approach will
allow the inclusion of the two-electron SO contributions even for relatively large systems of chemical interest,
with a modest computational effort that is compatible with the underlying, relatively inexpensive, DFT
approach. As a simple example, two-electron SO effects on all 1H and 13C nuclear shieldings in iodobenzene,

ŽC H I, have been evaluated one-electron SO contributions alone have been discussed recently for this system6 5
w x.6 .

2. Method

In the presence of an external magnetic field, SO interactions produce non-zero spin density even in formally
closed-shell systems, as they mix a ground-state singlet with excited triplet states. This SO-induced spin density

Ž .may take part in magnetic interactions in molecules or, e.g., in solids . The interaction with the magnetic
moments of the nuclei may lead to hyperfine structure which in principle might be observed by EPR
spectroscopy. Moreover, the SO interaction is the leading term for the electronic g-tensor of EPR spectroscopy.
Questions associated with EPR spectroscopy are outside the scope of the present Letter. However, the

Ž .SO-induced spin density contributes to the NMR shielding tensors, in particular via a Fermi-contact FC
w xmechanism. The theoretical background of this question has been discussed elsewhere 2,4 and recently a

w xgeneral qualitative concept has been delineated 6 which relates these interactions to the FC mechanism of
indirect nuclear spin–spin coupling.

To calculate the SO corrections to the nuclear shielding tensor, we use a DFT-based third-order perturbation
w x Ž .theory approach developed recently 2 . We include the FC operator through finite perturbation theory FPT .

Ž .Based on the perturbed Kohn–Sham orbitals spin-polarized by the FC operator , we then employ a sum-over-
Žstates ansatz to calculate the SO corrections to the NMR shielding tensor. The final expressions in the case of a

. Ž .common gauge origin are as follows l is the parameter specifying the finite perturbation :N

s a l qs b l s a , p l qs b , p lŽ . Ž . Ž . Ž .N ,Õu N N ,Õu N N ,Õu N N ,Õu N
s SO s s 1Ž . Ž .N ,Õu

l lN N

occ virt a ,0 a ,0 a ,0 SO a ,0e" c l NL Nc l c l NH Nc l² :² :Ž . Ž . Ž . Ž .k N iÕ a N a N iu k Na , ps l s 2Ž . Ž .Ý ÝN ,Õu N 0 0 0,xc2mc ´ y´ yD Ek a k ™ aak

and a corresponding expression for s b , p . Superscripts p indicate that paramagnetic shielding terms areN,Õu

considered, superscripts ‘0’ denote wavefunctions and energies unperturbed by the external magnetic field.
0, xc Ž . Ž .Taking D E s0 in Eq. 2 and for b spin corresponds to the simple uncoupled DFT approach. Thek ™ a

uncoupled equations result from the lack of a dependency of the commonly used exchange-correlation
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w xfunctionals on the induced paramagnetic current density 10 . Within the LOC1 approximation of the
w xSOS–DFPT method 11,12 we introduce a simple correction term

1r3 Ž .y2r31 30,xc
D E s p r 0,r r 0,r r 0,r d r 3Ž . Ž . Ž . Ž .Ž . Hk ™ a k a2 4

to account in part for such deficiencies of the functional.
In the above expressions, and in what follows, we use the following notation: r sr yr , B is the externali N i N

magnetic field, s the shielding tensor for nucleus N, subscripts i and j refer to electrons, subscript N refersN

to a nucleus, and u and Õ represent Cartesian components of vectors and tensors. We have used the following
operators:

e" Z L Li L j
N i N u ju iuSOH s y y2 4Ž .Ý Ý Ýiu 3 3 3ž /2mc r r ri N i j i jN j/i j/i

and

L syi r == ; L syi r == ; Li syi r == . 5Ž . Ž . Ž .Ž .iu i i i N u i N i ju i j ju u u

w x Ž Ž ..In our previous Letter 2 we included only the one-electron SO operator first term in Eq. 4 . In the present
Ž Ž ..work, the two-electron SO and spin–other-orbit terms second and third terms in Eq. 4 have also been

implemented, by interfacing the EAGLE code 3 to our program. Since the exact calculation of the resulting
Žtwo-electron integrals is demanding computationally in particular when compared to the underlying, relatively

. w xinexpensive DFT approach , we implement a mean-field approximation 9 to the two-electron SO terms.
Ž .Note that we presently neglect the spin-dipolar SD contribution to the hyperfine interaction. At the

Hartree–Fock level, the SD contribution has been found to account for only ca. 2–3% of the FC term for light
w xatom shieldings in the neighborhood of heavier nuclei 4,5 . This point is mentioned again in the discussion.

w xThe main idea of the mean-field SO approximation has been explained in Ref. 9 . In what follows, we give a
brief summary. The two-electron terms of the SO operator basically describe a shielding of the nuclear charges
Ž Ž .. Žthe ‘bare nuclear potential’, cf. the first term in Eq. 4 by the electrons mainly by the core shells at the same

. Ž .atom . This leads to the conclusion that an effective one-electron Fock-type operator should be sufficient to
describe the dominant contributions of the SO operator between valence–valence singly excited Slater
determinants, and that matrix elements between Slater determinants, which are doubly excited with respect to
each other, can be neglected. Generalizing the matrix element between singly excited determinants to the case of
partially filled shells leads to the Fock-type generalization

mf-orbs.
SO - mf SO SO SO< < < < < <² : ² : ² :H s i H 1 j q occ M iMa H 1,2 jMa q iMb H 1,2 jMbŽ . Ž . Ž . Ž .Ýi j

M

< SO < < SO < < SO <² : ² : ² :y iMa H 1,2 Ma j y iMb H 1,2 Mb j y Ma i H 1,2 jMaŽ . Ž . Ž .
SO< <² :y Mb i H 1,2 jMb 6Ž . Ž .

Ž .where i and j are spin orbitals and Ms are the partially occupied orbitals generating the electronic charge
Ž .distribution to interact with. occ M is the occupation number of orbital M. As the inner shells are, for practical

purposes, independent of the valence occupation, one common set of orbitals can be chosen to generate effective
integrals to be used for several valence excited states at the same time. As the computation of the effective
integrals requires the two-electron integrals in the full molecular basis set, no computational savings have been
made up to this point.

3 EAGLE is a code for the calculation of integrals of the Breit–Pauli SO Hamiltonian over molecular Cartesian Gaussian functions,
written by Praphull Chandra.
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For significant simplifications in the calculation of the integrals, further approximations have to be made. A
w xmore detailed analysis 13 of the contributions to the mean-field integrals leads to an omission of all

multi-centre one- and two-electron integrals. This amounts essentially to a calculation of the shielding of the
nuclear charge by the core electrons for each atom separately. This one-center approximation reduces the
number of two-electron integrals to be calculated significantly. Moreover, it allows advantage to be taken of full
spherical symmetry and thus the separation of the integrals into pure radial and angular parts. In particular, the
contraction of the integrals in the primitive basis set can be carried out already in the radial part, reducing the
computational demands dramatically.

While this short description of the mean-field SO approximation has been based on its usual use in SO CI
calculations, the same types of arguments apply to the present Kohn–Sham based perturbation theory. In a DFT
framework one may argue that, in the calculation of the SO integrals, the mean-field approximation makes use
of a sum of state-averaged atomic densities instead of the true molecular density in the core region. During an
expansion in atomic basis functions, it is further possible to neglect all terms between different centers
Ž .one-center approximation .

3. Computational details

w xThe calculations have been carried out using a modified version of the deMon–KS program 14 augmented
w xby the deMon–NMR code 12 . All calculations of SO corrections to the nuclear shieldings have been obtained

w x Ž . w xwith the Perdew and Wang exchange functional 15 and the Perdew correlation functional PP 16 whereas the
Ž .uncorrected nonrelativistic chemical shifts were calculated with the more recent PerdewrWang exchange-cor-

Ž . w x Ž w x .relation functional PW91 17 see Refs. 2,3,12 for further computational details . We have used two
Ž . Ž .different sizes of basis sets: a the moderately sized basis set BII of Kutzelnigg et al. also known as IGLO-II

w x Ž . Ž . w x18 and b a very large, fully uncontracted UP basis derived from Partridge’s basis sets 19 , leading to the
Ž . Ž . Ž . Ž . Ž . Ž w xsizes 16s4p H , 18s13p4d C,F , 20s15p4d Cl , 22s17p11d Br , and 27s20p14d I see Refs. 2,3 for the

.detailed construction . While all six cartesian components of the d-functions were kept in the nonrelativistic
shielding calculations, the s-like component was dropped in the calculations of the SO corrections, for

Ž .compatibility with the SO integral codes cf. below .
Ž . Ž .A FINE angular grid with 32 for the calculation of the chemical shifts or 64 for the SO corrections points

w xof radial quadrature 12,14 was employed. We used experimental structures for the hydrogen halides and for
w xiodobenzene 20 . For the halomethanes, the structures have been optimized at the Hartree–Fock level, using

w x Ž . w xquasi-relativistic effective-core potentials for carbon and halogen 21 together with 4s4p1d r 2s2p1d and
Ž . w x w x w x Ž . w x5s5p1d r 3s3p1d valence basis sets for carbon 21 and halogen 22 , respectively. A 4s1p r 2s1p basis was

w xemployed for hydrogen 23 . The optimization results are given in Table 1.
w x ŽIntegrals over the full Breit–Pauli SO operator 24 were evaluated by means of the EAGLE program see

.footnote 3 . This program is based on methods for the evaluation of operators which are expressible as
w xderivatives of the Coulomb potential 25 . The integrals of the Breit–Pauli operator are of this type, but also the

Table 1
Ž . aOptimized structures for the halomethanes CH X XsF, Cl, Br, I3

Ž . Ž . Ž .X r C–X r C–H / X–C–H

F 1.365 1.081 108.6
Cl 1.799 1.077 107.8
Br 1.948 1.077 107.5
I 2.167 1.077 107.2

a ˚Ž .HF optimizations with quasi-relativistic ECPs see text . Distances in A, angles in degs.
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integrals over the spin-dependent part of the Douglas–Kroll-transformed no-pair operator are accessible using
these methods.

For the calculation of the mean-field integrals, the atomic mean-field integral program AMFI has been used,
Ž . w xwhich was recently developed by one of us BS . In addition to the Breit–Pauli integrals 24 employed in the

present work, it is also capable of calculating the SO integrals for the no-pair SO operator obtained by the
free-particle Douglas–Kroll transformation. Detailed information on the no-pair SO operator can, e.g., be found

w x Žin Ref. 26 . The AMFI code uses the one-center approximation for both one- and two-electron SO integrals see
.discussion above . The code is based on spherical harmonic d-functions, and thus the s-like contaminant has

Ž .been projected out in the preceding deMon–KS calculation cf. above .

4. Results

4.1. 1H shifts of the hydrogen halides

1 Ž .Table 2 gives SO corrections to the H shieldings in HX XsF, Cl, Br, I computed by different methods
Ž .cf. discussion above . The calculations with the AMFI code involve the one-center approximation even for the
one-electron SO integrals. Comparison to the one-electron contributions computed with the EAGLE code
Ž .without the one-center approximation shows clearly that this is an excellent approximation.

Table 2 also shows that the two-electron contributions are far from being negligible. They amount to ca. 30%
of the one-electron contributions for HF, but their relative importance decreases for the heavier halogens, down
to ca. 7% for HI. Fig. 1 compares the computational results obtained with the larger UP basis set to experiment.

w xAs found previously 2,4,8 the nonrelativistic calculations cannot reproduce the large increase in the shielding
from HF to HI, which is clearly an SO effect, as shown by the SO-corrected results. The two-electron SO
corrections are opposite to the one-electron contributions, as expected, and thus reduce to some extent the

Ž .overall magnitude of the strongly shielding SO corrections. This improves slightly the agreement with
experiment in all cases. In view of the relatively constant deviations from experiment from HF through HBr, we
think that the remaining discrepancies arise largely in the nonrelativistic DFT calculations rather than from the
SO corrections. The almost perfect agreement with experiment for HI might be due to a cancellation of errors.

At this stage, a more detailed comparison to experiment is not warranted, as for a more quantitative study
Ž .other, as yet neglected, contributions need to be addressed. i Ro-vibrational corrections are expected to be

1 Žlarge for the present H shieldings. The bond-distance dependence of the SO contributions and thus their
.change upon inclusion of ro-vibrational effects may be quite different than that of the nonrelativistic shielding

Ž .alone. We have started an investigation into this matter. ii Spin-dipolar contributions to the hyperfine
interactions have been neglected. At the HF level, these have been found to account for ca. 2–3% of the FC

Ž 1 . w x Ž .interactions i.e. their inclusion will further increase the H shieldings 4,5 . iii Scalar relativistic effects might
w x Ž .become significant with iodine, in particular their coupling with the SO contributions 4 . iv Basis-set

Ž .incompleteness is expected to give too small shielding SO contributions, but may also influence the
Ž .nonrelativistic results the deMon–KS program version employed does not handle f-functions . Larger basis sets

increase the SO contributions by providing a larger virtual MO space for the perturbation expansion and by
Ždecreasing the relevant energy differences between occupied and virtual MOs note the analogy to the treatment

.of electron correlation by perturbation theory . This is confirmed by comparing the BII and UP basis set results
Ž .see Table 2 . The SO contributions generally increase with basis set expansion. In contrast, the nonrelativistic
shielding values are reduced by ca. 0.8–1.0 ppm for HF and HCl, but not for the heavier halides.

The exact treatment of all two-electron SO integrals quickly becomes demanding computationally with
Ž .increasing system size as will be illustrated below . Table 2 thus also includes results obtained with the

Žmean-field approximation for the two-electron SO integrals. This method works excellently even while
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Table 2
1 Ž . aSO corrections to H shieldings in hydrogen halides in ppm

bŽ .Basis s 1e–SO 1eq2e –SO s s ysexp. exp. nonrel.
cŽ .nonrel. Ž .EAGLE AMFI EAGLE AMFI HF

HF BII 30.04 0.16 0.17 0.11 0.11 28.89 y1.15
UP 29.09 0.17 0.18 0.12 0.12 y0.20

HCl BII 31.72 0.80 0.80 0.65 0.65 31.06 y0.66
UP 30.98 0.91 0.90 0.74 0.73 q0.08

HBr BII 31.25 4.18 4.18 3.75 3.76 34.96 q3.71
UP 31.27 4.86 4.87 4.38 4.38 q3.69

HI BII 31.65 11.59 11.58 10.79 10.78 43.86 q12.21
UP 31.74 13.30 13.29 12.38 12.37 q12.12

aUncorrected shieldings obtained with IGLO gauge, PW91 functional and 32 points of radial quadrature. SO corrections with common gauge on X, P86 functional, and 64 radial
points.
b w x w x Ž . w xExperimental shielding for HF from Ref. 30 . Values for HCl, HBr, and HI are gas-phase shifts from Ref. 31 converted to absolute shieldings using s CH s30.61 32 .4
c Ž .Atomic density matrix calculated at the HF level. Results with a DFT-based density matrix are identical see text .
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1 Ž .Fig. 1. Comparison of computed and experimental H shieldings for the hydrogen halides see Table 2 for numerical data . Calculations
with UP basis sets. The AMFI results are used for the SO corrections.

.including the one-center approximation , with deviations from the exact two-electron results of only ca. 0.01
ppm for the 1H shieldings. This result confirms the remarkable performance of the mean-field approximation

w xnoted previously for SO splittings 9,13 .
To calculate the mean-field SO integrals, atomic one-electron density matrices are required. These atomic

calculations may in principle be carried out at various theoretical levels. From a practical point of view, it is of
Žcourse desirable to use the same method as is used for the full molecular calculation in the present case DFT

.calculations with the deMon code . To estimate the sensitivity of the results to the choice of the atomic
w Ž .xone-electron density matrix, we have compared a Hartree–Fock derived density matrix AMFI HF , as well as

w Ž .xthe one obtained from the deMon–DFT calculations AMFI DFT . The results turn out to be identical, i.e. the
Ž .choice does not appear to be critical. Table 2 thus includes only the AMFI HF data.

Table 3 evaluates the use of mixed basis sets, i.e. of using the moderate BII basis on one atom together with
the large UP basis on the other atom. As expected, for the 1H shieldings it is more important to have a large
basis on hydrogen, as the FC operator probes the spin density at the NMR nucleus, which is particularly
basis-set dependent. It appears to be somewhat less important to have a large basis on the heavy neighboring
Ž .spin–orbit atom. Thus, results with the BII basis on the halogen but with the UP basis on hydrogen agree
excellently with the full UP basis results. In contrast, the results with the BII basis only on hydrogen are much

w xcloser to the full BII basis results. This type of a ‘‘locally dense basis-set approximation’’ 27,28 may also be
used to reduce the computational effort for very large systems, e.g. those with many heavy atoms.

The most important advantage of the mean-field approximation is of course the significantly increased
Ž .computational efficiency with respect to both disk space and computer time . To give the reader an idea of the

timings of different parts of the code for the DFT calculation of SO corrections to nuclear shieldings at different
levels of approximation, Table 4 summarizes some results for the hydrogen halides. The second column gives
the timings for the SCF part of the code, i.e. the CPU time required for the calculation of the Kohn–Sham MOs
Ž .single-point calculation, the number of SCF iterations is given . The other columns summarize the timings for

Ž .the deMon–NMR steps, using different methods codes for the calculation of the one- and two-electron SO
integrals. The calculation of the SO corrections with only the one-electron SO integrals by the EAGLE code

Ž .requires only about 20–30% of the time needed to obtain the nonrelativistic perturbed wavefunction. The
Ž .explicit calculation of the one- and two-electron SO integrals with the EAGLE code increases this ratio

significantly, to ca. 400–500% of the Kohn–Sham part. Since this increased computer time is accompanied by a
dramatic increase of the disk space needed to store the 2-electron SO integrals, the full-blown calculation of the
two-electron SO corrections becomes impractical already for relatively small molecules.

ŽIn contrast, the calculation of one- and two-electron SO terms within the mean-field approximation as
.implemented in the AMFI code is not significantly more expensive than the calculation of the one-electron
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Table 3
1 Ž .Basis set effects on SO corrections to H shieldings in ppm in hydrogen halides

Ž .Basis Basis 1e AMFI 1eq2e
a Ž . Ž Ž ..size EAGLE AMFI HF

HF UP 109 0.17 0.18 0.12
BII 29 0.16 0.17 0.11

bŽ .BII H 87 0.16 0.17 0.11
cŽ .BII X 51 0.17 0.18 0.12

HCl UP 109 0.91 0.90 0.73
BII 43 0.80 0.80 0.65

bŽ .BII H 87 0.80 0.80 0.65
cŽ .BII X 65 0.88 0.88 0.71

HBr UP 167 4.86 4.87 4.38
BII 73 4.18 4.18 3.76

bŽ .BII H 145 4.35 4.36 3.91
cŽ .BII X 95 4.81 4.82 4.33

HI UP 199 13.30 13.29 12.37
BII 93 11.59 11.58 10.78

bŽ .BII H 177 11.82 11.81 11.00
cŽ .BII X 115 13.31 13.29 12.37

a Number of contracted basis functions.
b Mixed basis with BII on H but UP on X.
c Mixed basis with UP on H but BII on X.

Ž .terms only Table 4 . Thus, at the mean-field SO level, the computation of the SO integrals requires only a
relatively small fraction of the computer resources for the overall shielding computations. Note, that the
uncontracted UP basis set represents essentially the worst case for the performance of the AMFI code, as no use

Ž .is made of the contraction of the integrals already in the radial part one of the main advantages of the code .

4.2. 13C shifts of the methyl halides

.
Table 5 gives the SO corrections to the 13C chemical shifts in the halogenomethanes CH X. Fig. 2 compares3

graphically nonrelativistic and SO-corrected results to experiment. First of all, we compare different choices of

Table 4
1 Ž . aTimings for various steps in the calculation of SO corrections to H shieldings in HX XsF, Cl, Br, I

b dŽ . Ž .AO SCF part 1e 1e q 2e EAGLE
cŽ . Ž . Ž .deMon EAGLE AMFI

Ž .HF 109 116 25 iter. 32 33 481
Ž .HCl 117 170 29 iter. 41 45 559
Ž .HBr 167 480 34 iter. 112 130 2116
Ž .HI 199 834 36 iter. 182 246 3930

a Ž .Times in s on a HP9000-C160 workstation.
b Number of contracted basis functions.
c Mean field approximation.
d Full evaluation of all 2-electron SO integrals.
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Table 5
13 Ž . Ž .SO correction to C shieldings in ppm in CH X XsF, Cl, Br, I3

bŽ .Basis s Gauge 1e–SO 1eq2e –SO s s ysexp. exp. nonrel.
c cŽ .nonrel. origin EAGLE AMFI EAGLE AMFI

CH F BII 119.98 on F 0.65 0.70 0.46 0.48 116.8 y3.23

BII 119.98 on C 0.66 0.74 0.47 0.50
UP 111.29 on F 0.62 0.65 0.44 q5.5
UP 111.29 on C 0.61 0.68 0.46

CH Cl BII 162.78 on Cl 2.22 2.21 1.82 1.82 162.5 y0.33

BII 162.78 on C 1.95 1.97 1.62 1.62
UP 153.39 on Cl 2.43 2.41 1.98 q9.1
UP 153.39 on C 2.24 2.25 1.86

CH Br BII 171.09 on Br 11.33 11.19 10.23 10.14 178.5 q7.43

BII 171.09 on C 10.73 10.67 9.74 9.66
UP 162.81 on Br 11.99 11.93 10.79 q15.7
UP 162.81 on C 11.06 11.05 10.04

CH I BII 188.76 on I 28.95 28.83 27.03 26.99 212.1 q23.33

BII 188.76 on C 21.92 21.86 20.58 20.56
UP 181.11 on I 29.66 29.55 27.64 q31.0
UP 181.11 on C 22.91 22.90 21.47

aDependence on the choice of gauge origin .
a Perturbation parameter ls0.00001. Nonrelativistic shieldings with IGLO gauge, SO corrections with common gauge as indicated.

13b Ž . w x Ž .Experimental shifts in ppm versus TMS from Ref. 33 converted to absolute shieldings, using s C TMS s187.9 ppm derived from
13Ž . w xs CO s0.9 ppm 30 .

c The AMFI calculations include the one-center approximation.

common gauge origin for the calculation of the SO corrections, either on the halogen or on the carbon nucleus
Ž .Table 5 . This choice matters significantly, increasingly so for the heavier halogens. For these, the better choice
certainly is the heavy halogen nucleus. However, for molecules containing several heavy atoms no such simple

Ž .choice can be made. Thus, distributed gauges e.g. as in the IGLO or GIAO procedures are needed. In this
context we found that the IGLO choice involves the danger of numerical instabilities, due to the separate

w xlocalization of a and b orbitals in the present implementation 2,6 . While these difficulties of the IGLO
Ž .approach for the calculation of SO corrections to chemical shifts can be overcome and are not always severe ,

GIAO procedures might be preferable from a purely theoretical point of view, as they do not involve any
Žlocalization procedure in fact, both methods have their individual advantages in the MO analysis of the SO

13 Ž .Fig. 2. Comparison of computed and experimental H shieldings for the methyl halides see Table 5 for numerical data . Calculations with
UP basis sets and common gauge origin at the halogen nucleus for the SO corrections. The AMFI results are used for the SO corrections.
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Table 6
13 1 Ž .SO corrections to C and H shieldings in iodobenzene in ppm

Ž . Ž .Nucleus 1e–SO AMFI 1eq2e –SO
Ž . Ž .EAGLE AMFI

C 33.19 33.08 30.85ipso

C y1.55 y1.56 y1.47ortho

C y0.43 y0.50 y0.46meta

C 0.29 0.22 0.18para

H y0.26 y0.26 y0.25ortho

H 0.24 0.19 0.19meta

H 0.09 0.05 0.05para

a Basis BII, perturbation parameter ls0.00001.

corrections, as the GIAO approach gives canonical MO contributions whereas the IGLO approach gives an
.analysis in terms of localized MOs . Both options will be pursued in our future work.

As for the 1H shifts in the hydrogen halides, the two-electron SO contributions account for ca. 30% of the
one-electron terms for the fluorine compound and thus reduce the SO shift considerably. Also as for HX, the
importance of the two-electron terms drops to ca. 6–7% for the iodine compound. The one-center approximation
for the calculation of the one-electron SO integrals again works well, with deviations from the exact results
below 1%. The mean-field approximation to the two-electron SO integrals performs excellently, with negligible

Ž .errors compared to the other error sources e.g. basis set effects, neglected spin-dipolar term, DFT errors .
In contrast to the 1H shieldings in the hydrogen halides, the 13C shieldings in the methyl halides are already

underestimated by the calculations including the one-electron SO corrections only. Therefore, the two-electron
SO contributions worsen the agreement with experiment slightly. In view of the relatively constant deviation
from experiment for CH F through CH Br it appears that, as for the hydrogen halides, the discrepancies arise in3 3

the nonrelativistic shieldings rather than in the computation of the SO corrections. The particularly good
agreement with experiment for CH I might again be due to error compensation. We note again, that a deeper3

comparison to experiment is not warranted at this stage, due to various other factors that need to be considered
Ž .see discussion in Section 4.1 .

4.3. 13C and 1H shifts in iodobenzene

Table 6 compares one- and two-electron SO contributions to the 13C and 1H shieldings in C H I taken as an6 5

example for a somewhat more complex molecule. First of all, the one-electron SO results obtained with EAGLE
Ž .and with AMFI agree reasonably well given the small absolute magnitude of some of these values . The

two-electron SO terms reduce the overall 13C SO shielding contributions by roughly the same amount as found
Žabove for HI or CH I ca. 6–7% for the ipso and ortho carbon atoms; the values for the meta and para carbons3

.and for the protons are so small that they probably suffer from significant numerical noise . The one-electron
SO corrected shifts for iodobenzene have been previously compared to experiment and were found to agree

w x Žquite well 6 . As the two-electron SO contributions are significantly smaller than basis set and other errors in
.part already in the nonrelativistic calculations , this agreement is not altered appreciably in the present work,

w xand we refer to Ref. 6 for details.

5. Conclusions

Various codes for the calculation of two-electron SO integrals have been interfaced with our program module
Ž .within the deMon–NMR code for the DFT calculation of SO corrections to nuclear shieldings. Both the fully
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explicit evaluation of all two-electron SO integrals and a computationally much more expedient mean-field
approximation have been compared. The excellent performance found for the latter approximation provides easy
access to the evaluation of one- and two-electron SO contributions to NMR chemical shifts for larger systems of
chemical interest. We find the two-electron terms to amount to ca. 30% of the one-electron terms for fluorine
substituents, much less than this for the overall much larger SO contributions obtained with the heavier halogens
Ž .ca. 6–8% for iodine .

The basis set demand for the computation of the FC interactions underlying the SO shifts is significant, such
that relatively large basis sets are needed to reach converged results. Due to the dominance and local character
of the isotropic hyperfine interactions, we find the use of locally dense basis sets to be a reasonable
approximation in this context, allowing even larger systems to be treated with reasonable accuracy.

w xAfter completion of the present work, we received a preprint of related work by Vaara et al. 29 . They have
implemented a quadratic-response MC–SCF scheme for the calculation of SO corrections to NMR chemical
shifts and applied their methods to the same hydrogen halides and methyl halides studied here. Taking these
very accurate extended-basis MC–SCF data as benchmark results for our much less expensive DFT calculations
Žby comparing the largest basis set MC–SCF results of Vaara et al. to our data obtained with the large UP

.basis , we find the overall agreement to be good. Consistent with the present results, Vaara et al. also find the
w xtwo-electron contributions to amount to ca. 30% for fluorine substituents, but to drop to ca. 7% with iodine 29 .
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