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Abstract

Normal coordinate calculations were performed by the density functional method of B3LYPr6-311qG )) on 205 basic
Ž .organic and inorganic compounds taken from the ‘Tables of Molecular Vibrational Frequencies’ T. Shimanouchi, 1972 .

The calculated wavenumbers, n , of 1729 vibrational modes were correlated with the observed wavenumbers, n , by acalc obs

single least-squares fitting. The relationship obtained, after omitting the vibrational modes that give deviations of more than
Ž y1.10%, is n rn s1.0087y0.0000163 n rcm . The wavenumber-linear scaling method with this relationshipobs calc calc

predicts vibrational wavenumbers with high accuracy and is applicable to any compounds, except for the compounds for
which the effect of dispersion forces is significant. q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

In the long history of vibrational spectroscopy,
normal coordinate analysis has played an important
role in interpretation of infrared and Raman spectra,
in particular, for making precise assignment of the
observed bands. It has also been used extensively to
determine molecular structures and molecular poten-
tial surfaces for a variety of compounds. A great
number of normal coordinate analyses have in fact
been performed by using empirical molecular force
fields and have contributed significantly to the devel-

w xopment of vibrational spectroscopy 1 . In result, a
huge number of empirical force constants have been
accumulated and the force constants for fundamental
organic compounds have been compiled as a database
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w x2–4 . Although normal coordinate analysis using
empirical force fields has been successful in many
cases, several difficulties with the force field have

w xbeen encountered in other cases 5–7 .
The difficulties in the traditional method of vibra-

tional analysis using empirical force fields have been
overcome by the introduction of ab initio quantum

w xmechanical method of calculations 8–10 . The ab
initio calculations by the Hartree–Fock method gen-
erally overestimate vibrational wavenumbers by
about 10% because of the neglect of electron correla-
tion and anharmonicity effects. The problem of the
overestimation was later solved practically by the

w xuse of a scaled quantum mechanical method 11,12 .
This method has then become one of the most useful
techniques in vibrational analysis, especially when
inexpensive calculations are preferred. To get more
accurate ab initio molecular force fields, more so-
phisticated methods of calculations including elec-
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tron correlation, such as the second-order Møller–
Plesset perturbation theory, have to be used. Since
these methods require more CPU time and more
memory resources than the Hartree–Fock method,
they are applicable only to relatively small molecules.

The recent evolution of density functional theory
Ž . w xDFT 13 , which includes electron correlation in an
alternative way, has afforded opportunities for per-
forming normal coordinate analysis of moderately
large molecules. Among various types of density
functionals available, those which use Becke’s

w xthree-parameter hybrid functional 14 with large ba-
sis sets such as 6-311qG ) ) have been found to be
the most promising in providing excellent results of

w xvibrational wavenumbers 15–21 . The DFT method
has thus been used in normal coordinate calculations
on a great number of compounds. Nevertheless, the
accuracy of calculated wavenumbers for the com-
pounds that involve high-periodic elements or iso-
topes is still not unambiguous.

Recent vibrational analyses by the DFT method
on 1,2-dimethoxyethane and N-methylthiourea have
indicated that no scaling of calculated wavenumbers
is necessary in effect in reproducing the experimen-

w xtal wavenumbers 19,20 . A more recent DFT study
has shown that there is a linear relationship between
the scale factor and the vibrational wavenumbers for

w xpyridine and picolines 21 . Such a linear relationship
has also been found for propanesulfonate ion in our
previous study of the second-order Møller–Plesset

w xperturbation theory 22 .
In the present work, we have systematically per-

formed normal coordinate calculations by the DFT
method on 205 basic organic and inorganic com-
pounds, for which the vibrational assignments had
been established. This work aims at examining calcu-
lation accuracy in normal coordinate analysis by the
DFT method and at confirming and proposing a
single linear relationship between the scale factor
and the calculated wavenumbers for a large variety
of compounds.

2. Compounds treated

The compounds treated in this work were taken
from the ‘Tables of Molecular Vibrational Frequen-

w xcies’ 23 , where the experimental wavenumbers of

infrared and Raman bands for 223 basic organic and
inorganic compounds including their isotopic species
are critically evaluated. We used for the present
normal coordinate analysis only the experimental

Žwavenumbers classified in ranks A uncertainty 0–1
y1 . Ž y1cm , observed in the gas phase , B 1–3 cm , gas

. Ž y1 .phase and C 3–6 cm , gas, solid or liquid phase
w x23 . The compounds that involve the fifth or higher
periodic elements were excluded from the analysis
because of unknown performance of the basis func-
tion on these compounds. Liquid methanol, which
forms intermolecular hydrogen bonding, and

Ž .poly methylene were also excluded. Therefore, we
used a total of 205 compounds for the present analy-
sis. The 18 compounds excluded are SbH , SbD ,3 3

SiI , SnCl , SnBr , SiCl I, SiClI , MoF , WF ,4 4 4 3 3 6 6
Ž .UF , CI , CH I, CD I, CH OH liquid , CH OD6 4 3 3 3 3

Ž . Ž . Ž . Ž .liquid , CD OH liquid , CH and CD . A list3 2 n 2 n

of the compounds treated in this analysis and the
results of calculations are available on request from
the corresponding author.

3. Calculations

Normal coordinate calculations were performed
w xon 205 compounds taken from Ref. 23 by the DFT

method using Becke’s three-parameter hybrid func-
w xtional 14 combined with the Lee–Yang–Parr corre-

w x Ž .lation functional 24 abbreviated as B3LYP . The
basis set used was 6-311qG ) ). The computations
were performed with the GAUSSIAN 98 program
w x25 . The input data for the GAUSSIAN 98 program
were prepared by using the graphical molecular

w xmodeling program Molda 26,27 .

4. Results and discussion

4.1. Scale factor

The ratios of the observed wavenumbers to the
unscaled calculated wavenumbers, n rn , forobs calc

1729 vibrational modes of 205 compounds are plot-
ted against the unscaled calculated wavenumbers in
Fig. 1. This ratio is denoted as the wavenumber scale
factor. The plot shows that most of the values of
scale factors are within 1.00"0.05 although several
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Fig. 1. Plot of the ratios of the observed wavenumbers to the unscaled calculated wavenumbers, n rn , against the unscaled calculatedobs calc

wavenumbers.

of them, especially those in the low-wavenumber
region, deviate appreciably from 1.0. It is noted that
the deviations of the calculated wavenumbers from
the observed wavenumbers of rank A are all within
8%. It is also shown that the deviations are larger for
lower wavenumbers. The vibrational modes that give
large deviations are mostly of the compounds that

Žcontain many halogen atoms e.g., SF , SeF ,6 6
.CF CF , CCl CCl and CBr CBr . These devia-3 3 3 3 3 3

tions can be explained by the effect of the London
dispersion force generated by the halogen atoms,
which may influence the wavenumbers of the halo-
gen-involved vibrational modes. In a previous study

w xon the London dispersion force 28 , the local and
Ž .gradient-corrected local semilocal DFT failed to

describe the dispersion interaction properly. A more
sophisticated treatment is necessary to elucidate the
effect of dispersion forces.

In the wavenumber region higher than 1000 cmy1,
the distribution of the scale factor n rn is smallobs calc

and the averaged value of the scale factor decreases
with increasing wavenumber. Most of the vibrations
in the 2000–4000 cmy1 region are associated with

the C–H and C–D stretching modes. Since the am-
plitudes of these vibrations involving H and D atoms
are large, significant vibrational anharmonicity is
expected for these modes. Accordingly, the normal
coordinate calculations under the harmonic approxi-
mation give rise to an overestimation of wavenum-
bers for these modes. The effect of anharmonicity
thus explains the lower values of the scale factor for
the modes in the 2000–4000 cmy1 region than the
modes with lower wavenumbers. The calculated
wavenumbers for the C–H and C–D bending modes
in the 1000–1500 cmy1 region are also lower than
the observed wavenumbers, giving scale factors of
about 0.98. This result is consistent with uniform
scale factors, which were justified in previous dis-

w xcussions 18,19 . A relationship between the scale
factor and vibrational anharmonicity has been explic-

w xitly described by Kudoh et al. 21 .
The present results of the calculated wavenumbers

for 1729 vibrational modes of 205 compounds were
correlated with the observed wavenumbers by a sin-
gle least-squares fitting. The 28 vibrational modes
that give deviations of n rn by more than 10%obs calc
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Table 1
Observed and calculated wavenumbers of four isotopic species of methylamine

a b b,c dSym. species Approximate type of mode n n unscaled n scaled n SQMobs calc calc calc

X Ž .CH NH A NH s-stretch 3361 B 3508 3338 33983 2 2
Ž .CH d-stretch 2961 B 3057 2931 29683
Ž .CH s-stretch 2820 B 2962 2845 28403
Ž .NH scis 1623 B 1668 1637 16242
Ž .CH d-deform 1473 B 1498 1474 14673
Ž .CH s-deform 1430 B 1460 1438 14303
Ž .CH rock 1130 A 1164 1152 11473
Ž .CN stretch 1044 A 1056 1047 1059
Ž .NH wag 780 A 822 818 7852

XX Ž .A NH a-stretch 3427 C 3585 3407 34422
Ž .CH d-stretch 2985 C 3093 2964 30003
Ž .CH d-deform 1485 D 1517 1493 15083
Ž .NH twist 1419 D 1343 1325 13252
Ž .CH rock 1195 D 974 967 9543
Ž .Torsion 268 B 306 307 274

X Ž .CH ND A ND s-stretch 2479 B 2535 2452 24453 2 2
Ž .CH d-stretch 2961 B 3057 2931 29703
Ž .CH s-stretch 2817 B 2962 2845 28473
Ž .ND scis 1234 B 1246 1232 12222
Ž .CH d-deform 1468 B 1498 1474 14673
Ž .CH s-deform 1430 B 1461 1439 14303
Ž .CH rock 1117 A 1148 1137 11403
Ž .CN stretch 997 A 1011 1003 1001
Ž .ND wag 625 A 642 641 6152

XX Ž .A ND a-stretch 2556 B 2643 2552 25382
Ž .CH d-stretch 2985 C 3093 2964 29813
Ž .CH d-deform 1485 D 1514 1490 15063
Ž .ND twist 1058 E 793 790 7732
Ž .CH rock 1187 C 1223 1209 12163
Ž .Torsion 228 C 253 254 225

X Ž .CD NH A NH s-stretch 3361 B 3508 3338 33983 2 2
Ž .CD d-stretch 2203 B 2251 2188 21953
Ž .CD s-stretch 2077 A 2140 2084 20483
Ž .NH scis 1624 B 1666 1635 16222
Ž .CD d-deform 1065 D 1078 1068 10563
Ž .CD s-deform 1142 A 1160 1148 11463
Ž .CD rock 913 A 944 938 9023
Ž .CN stretch 973 B 990 983 978
Ž .NH wag 740 A 767 764 7612

XX Ž .A NH a-stretch 3427 C 3585 3407 34422
Ž .CD d-stretch 2236 C 2294 2228 22113
Ž .CD d-deform 1077 C 1091 1081 10873
Ž .NH twist 1416 C 1269 1254 12382
Ž .CD rock 926 D 794 791 7843
Ž .Torsion 247 D 278 279 249

X Ž .CD ND A ND s-stretch 2477 B 2535 2452 24453 2 2
Ž .CD d-stretch 2202 B 2251 2188 21953
Ž .CD s-stretch 2073 B 2139 2083 20483
Ž .ND scis 1227 B 1243 1229 12112



( )H. Yoshida et al.rChemical Physics Letters 325 2000 477–483 481

Ž .Table 1 continued
a b b,c dSym. species Approximate type of mode n n unscaled n scaled n SQMobs calc calc calc

Ž .CD d-deform 1065 D 1077 1067 10573
Ž .CD s-deform 1123 B 1141 1130 11233
Ž .CD rock 880 B 914 908 8903
Ž .CN stretch 942 A 948 942 940
Ž .ND wag 601 A 617 616 6002

XX Ž .A ND a-stretch 2556 C 2643 2552 25382
Ž .CD d-stretch 2238 C 2293 2227 22103
Ž .CD d-deform 1077 C 1093 1083 10933
Ž .ND twist 1072 D 1056 1047 10432
Ž .CD rock 910 B 700 698 6843
Ž .Torsion 201 C 218 219 194

a w xRef. 23 . Ranks of the observed wavenumbers are given in parentheses.
b Calculated in this work by the B3LYPr6-311qG ) ) method.
c Ž .Scaled with Eq. 1 .
d w xCalculated and scaled by the HFr4-31G and SQM methods 31 .

Žwere omitted from the fitting. The data for these
.modes are yet included in Fig. 1. The relationship

thus obtained for 1701 vibrational modes is

n rnobs calc

s1.0087 9 y0.0000163 6 n rcmy1 ,Ž . Ž . Ž .calc

1Ž .

where the errors, given in parentheses, apply to the
last significant figures. The relationship derived in
this work may be compared with the previous rela-
tionship derived from 139 vibrational modes of pyri-
dine, 2-picoline, 4-picoline and the corresponding

w xDewar isomers 21 :

n rnobs calc

s0.9894 10 y0.0000104 6 n rcmy1 .Ž . Ž . Ž .calc

2Ž .
Ž . Ž .This formula 2 deviates slightly from Eq. 1 . The

deviation may be ascribed to the difference in the
) ) Ž .basis sets used, 6-311qG in Eq. 1 and 6-31q

) ) Ž .qG in Eq. 2 , and to the fact that only the data
for pyridine and picolines were used to derive Eq.
Ž . Ž .2 . The present relationship 1 has been derived
from the experimental wavenumbers covering a wider
range of wavenumbers using a number of com-
pounds that contain a variety of chemical elements.
Both relationships show that the scale factor,
n rn , is extrapolated to nearly 1.0 at zeroobs calc

wavenumber, where the effect of vibrational anhar-
monicity is negligible.

4.2. ReÕised assignments based on the present analy-
sis

Fig. 1 shows that there are several large devia-
tions of n rn from the linear relationship givenobs calc

Ž .by Eq. 1 , besides the deviations observed for halo-
gen-containing compounds as discussed above. The
unexpected large deviations can be ascribed most
probably to misassignment of the observed bands.
The present normal coordinate analysis has in fact
pointed out several obvious misassignments.

For cyclobutane, the experimental wavenumber
Ž .for the CH rocking mode A species is listed as2 1

y1 w x741 cm in Ref. 23 . The present calculation gave
a considerably higher wavenumber 1173 cmy1 for

Ž y1 Ž ..this mode 1161 cm after scaling with Eq. 1 ,
suggesting a revision of the assignment. Actually,
this mode has already been reassigned to a Raman

y1 w xband at 1153 cm 29 .
Other examples of misassignments are found for

methylamine. The present analysis has revealed two
large deviations in n rn for the observedobs calc

w xwavenumbers with ranks A–C 23 . One is for the
Ž XX .wavenumber of the NH twisting mode A species2

of CD NH and the other for the wavenumber of the3 2
Ž XX .CD rocking mode A species of CD ND . The3 3 2

present calculations gave wavenumbers 1269 and
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y1 Ž y1700 cm for these modes 1254 and 698 cm after
Ž ..scaling with Eq. 1 , in comparison with the listed

y1 w xobserved wavenumbers 1416 and 910 cm 23 .
Revised assignments of these modes have already
been proposed to infrared bands at 1260 cmy1 for

y1 w xCD NH and at 670 cm for CD ND 30 . The3 2 3 2

wavenumbers of these reassigned bands agree well
with the present scaled wavenumbers 1254 and 698
cmy1. Several other revisions of assignment are
found for the amino twisting and methyl rocking

Ž XX . w xmodes A species with ranks D and E 23 . Large
deviations noted for other compounds will be de-
scribed elsewhere.

4.3. WaÕenumber predictability by the waÕenumber-
linear scaling method

The predictability of vibrational wavenumbers by
Ž .the wavenumber-linear scaling WLS method with a

Ž .relationship of Eq. 1 will be discussed by illustrat-
ing the results of methylamine given in Table 1. In a

w xprevious analysis of methylamine 31 , the scaled
Ž . w xquantum mechanical SQM method 11,12 was used

in the Hartree–Fock calculations. In this method,
each of the internal coordinates, in terms of which
the force constants are expressed, is differentially
scaled by a least-squares method so that the calcu-
lated wavenumbers fit with the experimental
wavenumbers. In the previous calculations on meth-

w xylamine 31 , 14 scale factors were empirically opti-
mized, which yielded as a matter of course an excel-
lent agreement between the observed and calculated
wavenumbers as shown in Table 1.

The present results on methylamine based on the
WLS method are compared with the SQM results

w xoptimized by a number of scale factors 31 . The two
sets of the calculated wavenumbers for methylamine,
not only for the undeuterated species but also for the
deuterated species, show remarkable coincidence

Ž .with each other Table 1 . Thus, the WLS method as
applied in this work is found to reproduce experi-
mental vibrational wavenumbers for a large variety
of compounds, with the exception of compounds for
which the effect of dispersion forces is significant.
The high predictability of vibrational wavenumbers
ensures that the WLS method is a powerful tool for
precise normal coordinate analysis of molecules for

practically any compounds. This method is espe-
cially useful for vibrational analysis of those com-
pounds whose scale factors are not readily transfer-
able from other compounds.

5. Conclusion

The present DFT vibrational analysis by the WLS
method on 205 organic and inorganic compounds
reproduced the experimental wavenumbers. The pro-
posed relationship of wavenumber-linear scale factor
is applicable to any compounds, except for the com-
pounds for which the effect of dispersion forces is
significant, in calculations by the B3LYPr6-311q
G ) ) method. In consideration of the recent evolu-
tion of high-speed and inexpensive computers, the
WLS method is undoubtedly a promising approach
to ab initio vibrational analysis.
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