Molecular Wires Comprising π-Extended Ethynyl- and Butadiynyl-2,5-Diphenyl-1,3,4-Oxadiazole Derivatives: Synthesis, Redox, Structural, and Optoelectronic Properties

Changsheng Wang, Lars-Olof Pålsson, Andrei S. Batsanov, and Martin R. Bryce

Contribution from the Department of Chemistry and the Department of Physics, University of Durham, Durham DH1 3LE, UK

Received November 23, 2005; E-mail: m.r.bryce@durham.ac.uk

Abstract: 2,5-Diphenyl-1,3,4-oxadiazole (OXD) derivatives with terminal ethynyl- (4a,b) and butadiynyl- (8a,b) substituents have been synthesized in high yields. 2-Methyl-3,5-hexadiyn-2-ol has not been exploited previously in the synthesis of terminal butadiynes. Crystals of 8a and 8b are remarkably stable to long-term storage under ambient conditions. The X-ray crystal structure of 8a reveals that the butadiyne moieties are spatially isolated by the aromatic moieties, which explains the high stability. Two series of derived π-conjugated molecules, Donor-π(C=C)$_n$-OXD (n = 1, 2) and OXD-π(C=C)$_n$-Donor-π(C=C)$_n$-OXD (n = 1) [Donor = tetrathiafulvalene (TTF), bithiophene, 9-(4,5-dimethyl-1,3-dithiol-2-ylidene)fluorene, and triphenylamine], have been synthesized using Sonogashira reactions and characterized by X-ray crystallography, cyclic voltammetry, and optical absorption/emission spectroscopy. The electron-withdrawing effect of the OXD units is manifested by a positive shift of the donor oxidation waves in these systems: the butadiynylene spacer (n = 2) further shifts the first oxidation waves by 40–80 mV compared to analogues n = 1. The absorption spectra of TTF–OXD hybrids 10d and 11 are blue-shifted by 80 nm compared to the bithiynyl-bridged derivative 10f and are similar to the butadiynyl–OXD building-block 8a, demonstrating that conjugation is disrupted by a neutral TTF unit. Solutions of the TTF–OXD and 9-(4,5-dimethyl-1,3-dithiol-2-ylidene)fluorene–OXD hybrids, 10d, 10g, 11, and 13, are only very weakly fluorescent due to quenching from the electron-donor moieties. In contrast, the triphenylamine–OXD hybrids 12a, 12b, 14a, and 14b are fluorescent; the PLQYs of the butadiynylene derivatives 14a and 14b are lower than those of the ethynylene-bridged analogues 12a and 12b.

Introduction

In the past two decades, there has been a renaissance in the chemistry of aromatic alkenes, primarily due to the development of the palladium-catalyzed cross-coupling reaction of terminal alkenes with arylhalides (the Sonogashira reaction).1 This protocol provides an efficient and versatile means of extending the molecular length.2 Derivatives of porphyrins,3 tetrathiafulvalenes (TTFs),4 and organometallic complexes5 containing triple bond linkages have been studied recently. Synthetic advances have led to remarkable polyene systems of nanoscale lengths end-capped with organometallic6 or silyl substituents.7 However, butadiynylene derivatives, Ar\equivC=CC=C\equivAr’, remain fundamentally important targets for studies on optoelectronic properties of carbon-rich backbones,8 which have not been well-established experimentally.9 In this context, we were attracted to 2,5-diaryl-1,3,4-oxadiazole (OXD) derivatives due to their good thermal and chemical stabilities and their high photoluminescence quantum yields.10 These properties, combined with the electron-deficient nature of the oxadiazole ring, have led to their applications as electron-transporting/hole-blocking materials in organic light-emitting devices.11

1 Department of Chemistry.
2 Department of Physics.

10.1021/ja0577600 CCC: $33.50 © 2006 American Chemical Society J. AM. CHEM. SOC. 2006, 128, 3789–3797 • 3789
The diyne analogue of HiPA, i.e., 2-methyl-3,5-hexadiyn-2-ol, has not been explored previously in the synthesis of terminal butadiynes. It proved to be an efficient reagent for this purpose, affording 8a,b (Scheme 2) as crystalline solids by analogy with the synthesis of 4a,b. 2-Methyl-3,5-hexadiyn-2-ol was less reactive than HiPA in cross-coupling reactions with aryl bromides 2a,b. Therefore, the iodide derivatives 6a,b were used to avoid high temperatures. It is notable that 8a,b are stable to routine purification and can be stored under ambient conditions for months without any detectable decomposition. The unusual high stability of 8a can be explained by the packing mode in the solid state (as revealed by X-ray analysis: see below).

With 4 and 8 in hand, we proceeded to functionalize the terminal positions with redox-active moieties. The butadiynes 8a,b are particularly attractive building blocks for the synthesis of unsymmetrical 1,4-diarylbutiadiyne derivatives, as their cross-coupling reactions preclude any possibility of symmetrical byproducts being formed. We attempted to prepare 10a by the cross-coupling of 4a with 2,7-dibromofluorenone under Sonogashira conditions led to self-coupling of 4a to give 9 (90% yield, Scheme 3). It is well-known that self-coupling of terminal alkynes can occur as a side-reaction alongside cross-coupling, and it is favored when arylbromides are used for the reaction. When the more reactive 2,7-diofluorobenzene was used, both 10a,b were isolated in high yields (Scheme 3). Due to the extremely low solubility of 2,7-dibromo-9-(dicyanomethylene)fluorene in organic solvents (requiring boiling DMF), it was not possible to carry out its coupling with 4 or 8. 10c was, however, synthesized by condensation of the fluorenone analogue 10b with malononitrile.

10d–g were similarly obtained in 67–91% yields from the corresponding diiodo compound and reagent 4a or b.

Results and Discussion

Synthesis. The OXD-containing terminal ethynes 4a and 4b were synthesized in high yields from the OXD bromides 2 (obtained, in turn, by dehydrative cyclization of 1a and 1b) first via Sonogashira couplings with 2-methyl-3-butyn-2-0i (HIPA) followed by deprotection of the precursor compounds 3 in the presence of a catalytic amount of NaOH in toluene (Scheme 1). Apart from its low cost, there are two major attractions in using HIPA to synthesize these terminal alkynes. (1) The high polarity of the protected derivatives 3 leads to easy chromatographic separation of the deprotected products 4 from any unreacted 3. (2) The higher boiling point of HIPA (compared to that of triethylsilylacetylene) allows higher reaction temperatures, which are required for some unreactive aryl bromides.

coupled OXD–TTF hybrids 11 and 13 were synthesized (64 and 32% yields, respectively) by the reaction of 4a and 8b with iodo–trimethyl–TTF (Schemes 3 and 4). In the 1H and 13C NMR spectra of 11 and 13, the signals from the methyl groups on the TTF moieties were significantly broadened by the presence of a trace amount of acid in commercial CDCl3, leading to cation radical formation by protic doping. However, sharp spectra of 13 were obtained in CDCl3 treated with a grain of solid NaOH. Due to the relatively higher oxidation potential of 10d compared to those of 11 and 13, its spectra were less sensitive to the acidity of the solvent, and the signals of the TTF protons were sharp in fresh CDCl3.

The N,N-dimethyl/diphenyl-aminophenyl derivatives 12a,b and 14a,b were obtained in moderate yields from reactions of 4 and 8, respectively, with N,N-dimethyl- or N,N-diphenyl-4-idoaniline.

X-ray Crystallography of 8a, 9, 10g, 11, and 14a. 8a (Figure 1) adopts a nearly planar conformation. The oxadiazole ring is inclined to the benzene rings i and ii by 5.1 and 3.2°, respectively. All non-hydrogen atoms, except two methyl groups, lie in one plane with an average deviation of 0.06 Å and a maximum of 0.22 Å. The molecules are packed into an infinite stack, parallel to the x axis. Each pair of adjacent molecules in the stack is related by an inversion center, the interplanar separations alternating between 3.50 and 3.56 Å. The terminal ethynyl group forms a C–H⋅⋅⋅N(1) hydrogen bond [C–H 0.94(2), H⋅⋅⋅N 2.48(2) Å, CHN angle 138(1)°], linking molecules into an infinite chain, parallel to the [1 1 0] direction. 8a is only the fourth structurally characterized compound with an aryl–C≡C–C≡CH moiety (see below).

9 (Figure 1) has crystallographic C1 symmetry. Unlike the rest, it is substantially nonplanar. Even excluding all methyl groups, the average deviation of non-hydrogen atoms from the mean plane is 0.24 Å with the maximum of up to 0.6 Å. The oxadiazole ring forms dihedral angles of 18.6 and 17.6° with the two adjacent benzene rings i and ii, respectively. Overall, the molecule adopts an S-shape: the terminal C(benzene)–C(t-Bu) bond forms an angle of 126.5° with the central C≡C–C≡C moiety. The total length of the molecule (by van der Waals shape) is ca. 35 Å.

10g crystallizes from chloroform as a 1:3 solvate (Figure 1). The molecule of 10g adopts an approximately planar conformation, except for both 2-ethylhexyl groups, which are intensely disordered. The maximum length of the molecule (in van der Waals shape) is 51 Å, whereas the length of its planar part [between the centers of the O(3) and O(4) atoms] is 36.6 Å. In
Scheme 2. Synthesis of OXD–butadiynes 8

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{Cl} & \quad \text{NHNNH}_2 \\
\end{align*}
\]

Pyridine

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\end{align*}
\]

Triethylamine

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\end{align*}
\]

$$\text{CH}_2\text{Cl}_2$$

$$\text{POCl}_3$$

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{N} & \quad \text{N} \\
\end{align*}
\]

$$\text{C}$$

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\end{align*}
\]

7a (87%), 7b (86%)

Tol / NaOH

8a (78%), 8b (86%)

a, R = tert-Butyl

b, R = dodecyloxy

The structure of 8a is particularly interesting and merits further discussion. Very few terminal (in contrast with disubstituted) butadiyne derivatives are known, obviously due to their lower chemical stability. A survey of the May 2005 version of the CSD24 revealed only six such compounds, three with aryl–C≡C–C≡CH25 and three with C(sp3)–C≡C–C≡CH26 moieties, and a number of transition metal complexes where the bonding along the M–C≡C–C≡CH chain may differ substantially from the diyne pattern, due to back donation from the metal atom. Disubstituted butadiynes are important precursors of polydiacetylenes, and the conditions for their topochemical (crystal lattice-controlled) polymerization have been extensively studied.27 The polymerization requires close proximity between the butadiyne moieties, with a continuous chain of intermolecular C1–C4 contacts or of alternating C1⋯C1′ and C4⋯C4′ contacts. This can be ideally achieved by a slanted arrangement of parallel butadiyne moieties, so that a vector connecting their centers is ca. 4.9 Å long (“repeat distance”, \(d\)) and forms an angle (\(\Phi\)) of 45° with the butadiyne rod. Such packing is adopted by 1-resorcinol-1,3-butadiyne in the crystals of its monohydrate (\(d = 5.09\) Å, \(\Phi = 45^\circ\), 1⋯C4′ distance 3.64 Å) and its 1:1 molecular complex with an oxalamide (\(d = 4.72\) Å, \(\Phi = 54^\circ\), 1⋯C4′ distance 3.95 Å), both of which undergo topochemical polymerization with a transformation of a single crystal into a single crystal, as proven by X-ray diffraction measurements.

diffraction studies of both the starting and the polymerized samples.27c An alternative prearrangement for polymerization is a close packing of parallel molecules without any slanting (d = 3.4 Å, Φ = 90°), which has seldom been achieved for disubstituted butadiynes (actually, with d = 3.7 Å, Φ = 75–82°)26c and, to our knowledge, never for terminal butadiynes. The topochemical polymerization has been reported for 3-[BuN-(OH)]-4-ClC₆H₅C₆H₅ = C₆H₅ = C₆H₅, but the evidence is less conclusive.26a The polymer has not been structurally characterized, and we found it difficult to reconcile the description of the monomer structure in this paper with the atomic coordinates deposited in the CSD (refcode VOVLIB). The authors reported that polymerization propagated along the a/c diagonal of the crystal and associated it with a chain of butadiyne moieties along this direction, with alternating contacts C₁â–C₄′ of 4.55 Å and C₄â–C₄′ of 4.72 Å. We have calculated the C₁â–C₄′ contact of 4.49 Å and found no C₄â–C₄′ distance shorter than 5.99 Å.

There is, in fact, a C₁â–C₁′ contact of 4.72 Å in the proposed diagonal direction, but the mutual orientation of the molecules is quite awkward. In any case, neither a C₁â–C₄′, C₄â–C₄′ nor C₁â–C₄′, C₄â–C₁′ succession provides a chemically meaningful path for polymerization, and the contact distances involved are much longer than what is usually regarded as the upper limit for topochemical polymerization (ca. 4 Å).27c

In the structure of 8a, the butadiyne moieties form no continuous chains, only discrete antiparallel pairs (molecules are symmetrically related via an inversion center) with d = 5.39 Å and Φ = 75.7°. The intermolecular distances therein, C₁â–C₄′ 5.39 Å and C₁â–C₁′ 5.76 Å, are even longer than in the aforementioned structure. From all other sides, the butadiyne moiety is screened by benzene rings, a methyl group, and a heterocycle of three adjacent molecules. Thus, the structure offers no conditions for solid-state polymerization. To confirm this postulation, the crystals of 8a were heated at 10 °C/min to
145 °C, and the high temperature was held for an additional 0.5 h. No obvious thermally induced reaction was observed under an optical microscope. Subsequent heating to >160 °C led to a darkening of the solid, and the resultant black solid did not melt until 320 °C.

UV–Vis Absorption Spectra. The solution UV–vis absorption spectra of 4 and 8 and their coupled products 9–14 were recorded, and representatives are shown in Figure 3a–d.

Figure 3a shows the spectra of the bisOXD–butadiyne 9 and the bisOXD–TTF derivative 10d compared with their building blocks 4a and 8a, respectively. Despite the longer molecular length of 10d compared to that of 9, the \(\lambda_{\text{max}} \) of 10d (326 nm) was 24 nm shorter than that of 9 (350 nm) and similar to that of 8a (324 nm). These data demonstrate that there is conjugation of the two OXD moieties through the butadiyne bridge in 9, whereas neutral TTF disrupts the conjugation, and in molecule 10d, there is essentially no conjugation between the two OXD moieties. It could also be considered that these two OXD moieties in 10d communicate in a way similar to cross-conjugating functional groups in oligo(enynes). 26 The conjugation length of 10d was equivalent to that of 4a, extended by only one of the TTF peripheral double bonds. This conclusion also explains the essentially superimposable spectra of 10d and 11 (\(\lambda_{\text{max}} \) = 326 and 328 nm, respectively, the latter is shown in Figure 3d). The 2-nm red-shift for 11 could be due to the substituent effects of the methyl group on the same side of the TTF moiety. A comparison with the spectra of 10e,f is also informative. The additional thiophene ring in the bisOXD–ethynyl bithiophene 10f led to a 27-nm red-shift of \(\lambda_{\text{max}} \) compared with the thiophene analogue 10e (Figure 3d), indicating extended conjugation through the longer bridge. However, although the TTF-bridged molecule 10d (\(\lambda_{\text{max}} \)= 326 nm) is geometrically longer than 10e and comparable with 10f, its primary \(\lambda_{\text{max}} \) was 53 nm shorter than that of 10e (379 nm) and 80 nm shorter than that of 10f (406 nm). This arises again because the neutral TTF bridge distorts the conjugation between the OXD–acetylene segments.

Figure 3b shows that the primary absorption bands of the three fluorenone analogues 10a,c,g have similar features. This is because the substitution of the O-atom at the 9-position of the fluorenone unit does not affect the conjugation lengths of the backbones. The shoulder on the low-energy side of 10g is characteristic of TTF/1,3-dithiole-containing compounds and could be attributed to exciplex formation.

The aniline derivatives 12a,b, and 14a,b all exhibited two-band absorption features with comparable oscillation strength, although 14 showed clear fine structures (Figure 3c). Varying the amino substituents from phenyl to methyl in 12a,b led to 5- and 9-nm blue-shifts for each band, respectively, which were consistent with the UV spectra in cyclohexane of triphenylamine (\(\lambda_{\text{max}} \) = 301 nm)29 and dimethylaniline (\(\lambda_{\text{max}} \) = 295 nm).30 However, the phenyl-to-methyl substitution in 14 resulted in very small shifts in the opposite direction (ca. 3 nm for both bands), indicating a difference in donor–acceptor interactions through the butadiyne bridge.31 The existence of the additional low-energy absorption bands in 12 and 14 can be explained by the fact that these molecules comprise conjugately linked acceptor (A)–donor (D) units (OXD and amino, respectively). Such an A–D combination significantly reduces HOMO–LUMO gaps,32 a feature which is also seen in the solution electrochemical behavior of these compounds (see below, Figure 7d). Broad, low-energy absorptions occur at ca. 450 nm for 10a, 10b, 10d, 11, and 13. For 10a,b, this band (\(\epsilon \) ca. 7000) is attributed to \(n \leftarrow \pi^* \) transitions associated with the carbonyl group; for 10d, 11, and 13 (\(\epsilon \) 800–2000), they are assigned to sulfur-related \(n \leftarrow \pi^* \) transitions, which are typical of many substituted 1,3-dithiole and TTF derivatives.

Emission Spectra. Both 12a and 14a showed single-wave emission bands at 466 and 479 nm, respectively, in chloroform solutions at 310 K, whether the excitations were placed at the high-energy or the low-energy absorption regions. The photoluminescence excitation (PLE) spectra of 12a and 14a were compared to the 1-transmission (1-T) spectra. The ambient temperature PLE and (1-T) spectra of 12a (Figure 4, upper) are very similar, confirming an energy transfer process across the C≡C bond system of at least 97% efficiency. In contrast, the PLE and (1-T) spectra of 14a, under the same conditions,

References:

were different in the 400-nm region. Normalizing the PLE and (1-T) at ~375 nm gives an 88% transfer efficiency upon excitation in the ~330 nm band (Figure 4, lower). These data, therefore, suggest a difference in energy transfer efficiency between 12a and 14a at ambient temperatures.

A comparison of the spectra obtained at 77 K shows that the transfer efficiency in 14a was only 72% of the corresponding efficiency in 12a, for excitation in the 320-nm region. The same experiments carried out for the methyl analogues 12b and 14b gave similar results (data not shown) that confirm that the effects observed can be attributed to the butadiynylene bridge rather than to substituents on the aniline moieties.

We have also observed that the wavelengths and intensities for the emission bands for both 12 and 14 were significantly temperature dependent. In the case of 12a (Figure 5), the PL \(\lambda_{\text{max}} \) had a small red-shift at \(T > 150 \) K followed by a sharp blue-shift starting at ca. 125 K, as the temperature decreased. The PL intensity decreased gradually with the red-shift then sharply increased, accompanying the blue-shift. The PL intensity of 12a at 77 K was about 2.5-fold of magnitude higher than at 150 K. The same trend for the temperature dependence was also observed for 14a, and the PL intensity increased even more significantly: at 77 K it was more than 10 times stronger than at ca. 225 K. It is also noteworthy that the blue-shift for 14a started at a temperature 80 K higher than that for 12a (ca. 150 K for 12a and 230 K for 14a, Figure 5b). Varying the substitution at the aniline moieties (viz. from 12a to 12b and 14a to 14b) did not alter the trends of temperature dependence. This again confirms that the observed effects originated from the ethynylene/butadiynylene bridge rather than the functional group.

Figure 1. Molecular structures of 8a, 9 (primed atoms are generated by the inversion center), 10g:3CHCl3, showing the disorder (H atoms are omitted for clarity, except those which form hydrogen bonds), 11, and 14a.
A possible explanation for the T-induced blue-shift could be that excitation-/decay-associated structural reorganization of the atoms became difficult in the solvent matrix, and hence, the transition/decay modes changed upon freezing. Semiempirical level (PM3) calculations for 12a and 14a could explain this situation. Figure 6 shows their frontier orbitals. For both compounds, the HOMOs reside mostly on the aniline side, whereas the LUMOs reside mostly on the OXD fragment. The HOMO-to-LUMO transition or the LUMO-to-HOMO decay demand significant structural reorganization in the molecules, which will become harder, or even impossible, as the solvent matrix is formed at low temperature. Accordingly, a transition/decay, which requires a smaller degree of structural reorganization (e.g., those between the LUMO and the HOMO-1, Figure 6), will take place. A blue-shift is, therefore, expected in this case. As the degree of structural reorganization of 14 is larger than that of 12, this blue-shift process starts at higher temperature for 14 than for 12.

The photoluminescence quantum yields (PLQYs, relative to an anthracene/ethanol standard) of 12 and 14 probed a further difference between the two structures. For 12a,b the PLQYs were 93 and 89%, whereas for 14a,b the values were 36% and 4%, respectively (λ_{exc} 320 nm). We conclude, therefore, that there is a less efficient transfer of excitation energy from the OXD unit across the butadiynylene bridge than across the ethynylene bridge, independent of the aniline substituents. We assume that the energy in 14,b is lost through a nonradiative de-excitation pathway involving the OXD moiety.

Cyclic Voltammetry. The solution redox properties of 4a, 8a, 10b–g, and 11–14 have been studied by cyclic voltammetry (CV) (Figure 7 and Table 1). 10d, 11, and 13 exhibited reversible TTF-type, two-step, one-electron redox couples between 0 and 1 V (vs Ag/Ag$^+$-acetonitrile) (Figure 7a). Compared with trimethyl-TTF,33 the half-wave potentials of 11 (0.12 and 0.63 V) and 13 (0.16 and 0.64 V) were anodically shifted by ca. 100 mV, due to the electron-withdrawing OXD-ethynyl or -butadiynyl substituents. The additional ethynylene spacer in 13 resulted in only a small increase in the oxidation
The oxidation potentials of 10d were further anodically shifted: the two redox waves appeared at $E^{1/2} = 0.31$ V and $E^{2/2} = 0.74$ V, due to the additional ethynyl–OXD group combined with the absence of the electron-donating methyls.

In contrast to the TTF systems, 10g showed only one reversible oxidation wave at $E_{1/2} = 0.58$ V within the same potential range, which is ascribed to the formation of the 10g$^{+}\text{+}$ species. The thiethyl and bithiethyl derivatives 10e,f exhibited irreversible waves at 1.27 and 0.98 V, respectively (Figure 7b). The irreversibility of these two derivatives was in agreement with the data for 3,4-ethylenedioxythiophene (EDOT) and biEDOT,34 and the oxidation potentials were in agreement with those of 2,5-diphenylthiophene and 5,5′-diphenylthiophene35 in addition to the anodic shift caused by the ethynyl–OXD substitution. Repeated scans of solutions of 10e,f led to significant deposition of the oxidized species rather than polymerization.

The reductive-scan CVs of 10b,c in THF solution are shown in Figure 7c. The first reversible redox wave of 10b at -1.40 V arises from the fluorenone ketone reduction, whereas the second wave at -1.95 V is associated with the central fluorene units. Due to the strongly electron-withdrawing dicyanomethylene group, both waves of 10c were anodically shifted by ca. 50 mV ($E^{1/2} = -0.83$ V and $E^{2/2} = -1.48$ V) when the cathodic scan was limited to -2.0 V, which can be attributed to the formation of 10c$^{+}$ and 10c$^{-}$ species.36

To understand the electrochemical behavior of the cross-coupled derivatives, the CVs of 4 and 8 have to be explained first. Both 4a and 8a showed irreversible anodic waves at 1.8 V associated with oxidation of the ethynyl groups, and 4a showed two poorly resolved reduction waves at ca. -2.3 and -2.45 V, whereas the reduction of 8a was anodically shifted giving three waves at -2.43, -2.21, and -2.03 V (Figure 7c). These reduction waves are associated with both the triple bonds and the OXD rings. The introduction of aniline groups into 4a (to afford 12a,b) introduced new irreversible oxidation waves, respectively, at 0.73 V (12a) and 0.46 V (12b) (Figure 7d, upper). Similar behavior was observed for 14a,b (Figure 7d, lower). The DMF solutions of 12b and 14b (both were insoluble in acetonitrile) did not allow the observation of the acetylenic oxidations.

It is noteworthy that, unlike their building blocks (4 and 8) and other analogues in this series that are strongly fluorescent, solutions of all the 1,3-dithiole-containing derivatives, namely, 10d, 10g, 11, and 13, were only very weakly fluorescent, which is in accord with previous observations that TTF is an efficient quencher of fluorescence.37 We considered that compounds with an oxidation potential more cathodic than that of 10g (0.66 V vs Ag/AgCl) are oxidized at 0.46 V (12b) and 0.54 V (14b) respectively, but their solutions, similar to 12a and 14a, were fluorescent.

Figure 5. Temperature dependence of the photoluminescence of 12a and 14a. (a) PL profiles of 12a in chloroform–propylene carbonate matrix at different temperatures (λ_{ex} = 310 nm). (b) T-λ_{em} dependence of 12a (λ_{ex} = 330 nm) and 14a (λ_{ex} = 340 nm).

Figure 6. Semiempirical calculated (PM3) frontier orbitals (HOMO and LUMO) and the orbitals immediately below the HOMOs (HOMO-1) of 12a and 14a.
(12 has higher PLQYs than 14). A most likely explanation for the fluorescence of 12 and 14 is that the LUMO-to-HOMO decay process associated with the N,N-diphenylaniline units is radiative, whereas the TTF/1,3-dithiole-related relaxations in 10d, 10g, 11, and 13 are nonradiative.38 Intra-molecular energy transfer could proceed from the OXD moieties of the excited states to the TTF/1,3-dithiole neutral/radical cation moieties to form nonradiative excited states of 10d, 10g, 11, and 13. This postulation can be explained by taking 10d as an example. Neutral 10d had a weak low-energy absorption maximum at 442 nm in the visible region, whereas the cation radical of 10d had two absorption bands centered at ca. 435 and 722 nm (Figure 8). This low-energy absorption band corresponds to the HOMO-LUMO transition. Whether a charge-transfer process, as proposed, is involved or not, HOMO-LUMO transitions of both neutral and cation-radical 10d are of lower energy than the emission of the OXD-alkyne building block (4a, $\lambda_{em} = 354$ nm), and the energy of the latter emission will be self-absorbed.

Conclusions

We have successfully developed the chemistry of -ethynyl (4a,b) and -butadiynyl (8a,b) OXD derivatives. Functionalization has been readily achieved at their terminal positions using Pd(II)-catalyzed cross-coupling reactions with a range of redox-active moieties [e.g., TTF, bithiophene, 9-(4,5-dimethyl-1,3-

Figure 7. Cyclic voltammograms of: (a) 10d, 11, and 13 in DCM; (b) 10f, 10g, 10e in DCM; (c, upper) 10e and 10b in THF, (c, lower) 4a and 8a in acetonitrile; and (d) 12a and 14a in acetonitrile, 12b and 14b in DMF. All of the solutions contained 0.1 M TBAPF$_6$ as the supporting electrolyte, and the voltammograms were recorded at 100 mV/sec, using Pt disk ($\Phi = 1.8$ mm) as the working electrode, Pt wire as the counter electrode and Ag/AgNO$_3$-acetonitrile as the reference electrode. Under these conditions in DCM, $E^{1/2}$ of ferrocene was 0.175 V. Due to the irreversibility of 4, 8, 12, and 14 to both reduction and oxidation, the cathodic and anodic scans were performed separately starting from 0 V; the initial scan directions are indicated with arrows.

Table 1. Redox Peak Potentials (vs Ag/Ag$^+$) of Compounds in Different Solvents

<table>
<thead>
<tr>
<th>compound</th>
<th>$E_{red}^{1/2}$</th>
<th>$E_{red}^{2/3}$</th>
<th>E_{red}^{1}</th>
<th>E_{ox}^{1}</th>
<th>E_{ox}^{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>2.42</td>
<td>-2.21</td>
<td>-2.03</td>
<td>1.75</td>
<td>1.80</td>
</tr>
<tr>
<td>8a</td>
<td>2.43</td>
<td>0.35</td>
<td>0.66</td>
<td>0.81</td>
<td>1.23</td>
</tr>
<tr>
<td>10b</td>
<td>1.99</td>
<td>-1.99</td>
<td>-1.45</td>
<td>0.81</td>
<td>1.02</td>
</tr>
<tr>
<td>10c</td>
<td>1.57</td>
<td>-1.57</td>
<td>-0.90</td>
<td>0.81</td>
<td>0.66</td>
</tr>
<tr>
<td>10d</td>
<td>1.35</td>
<td>0.35</td>
<td>0.66</td>
<td>0.81</td>
<td>1.23</td>
</tr>
<tr>
<td>10e</td>
<td>1.23</td>
<td>1.23</td>
<td>1.02</td>
<td>1.02</td>
<td>0.81</td>
</tr>
<tr>
<td>10f</td>
<td>1.02</td>
<td>1.02</td>
<td>0.81</td>
<td>1.02</td>
<td>0.66</td>
</tr>
<tr>
<td>10g</td>
<td>0.66</td>
<td>0.66</td>
<td>0.20</td>
<td>0.66</td>
<td>1.38</td>
</tr>
<tr>
<td>11</td>
<td>0.16</td>
<td>0.16</td>
<td>0.20</td>
<td>0.66</td>
<td>1.38</td>
</tr>
<tr>
<td>12a</td>
<td>-2.24</td>
<td>-2.24</td>
<td>0.35</td>
<td>1.38</td>
<td>1.38</td>
</tr>
<tr>
<td>12b</td>
<td>-2.27</td>
<td>-2.27</td>
<td>0.46</td>
<td>1.38</td>
<td>1.38</td>
</tr>
<tr>
<td>13</td>
<td>-0.20</td>
<td>-0.20</td>
<td>0.35</td>
<td>1.38</td>
<td>1.38</td>
</tr>
<tr>
<td>14a</td>
<td>-2.29</td>
<td>-2.29</td>
<td>0.35</td>
<td>1.38</td>
<td>1.38</td>
</tr>
<tr>
<td>14b</td>
<td>-2.35</td>
<td>-2.35</td>
<td>0.35</td>
<td>1.38</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Figure 8. Photoluminescence spectra of 4a (solid line, λ_{ex} 354 nm), 10d (circled line, λ_{ex} 300 nm) in chloroform solution, and UV–vis absorption spectra of 10d in dichloromethane containing 0.1 M Bu$_4$NPF$_6$ at 0 and 1.2 V applied voltages (vs Pt).
dithiol-2-ylidene)fluorene, and triphenylamine, etc.) to provide two series of compounds, Donor–(C≡C)ₙ–OXD (n = 1, 2) and OXD–(C≡C)ₙ–Donor–(C≡C)ₙ–OXD (n = 1). The structural, optical, and redox properties of these compounds have provided a unique opportunity to probe conjugation through rigid-rod aryleneethynylene and arylenebutadiynylene wire structures. The following conclusions emerge from this study.

1) Terminal butadiynes are versatile building blocks for unsymmetrical 1,4-diarylbutadiyne derivatives, and the remarkable stability of the terminal butadiynyl-2,5-diphenyl-1,3,4-oxadiazole derivatives 8a,b has been explained by the crystal packing of 8a.

2) The additional ethynylene group in the butadiynylene derivatives leads to a relatively small, but clearly observable, increase in conjugation length compared to ethynylene analogues.

3) There is less-efficient intramolecular energy transfer through the butadiynylene bridge than the ethynylene bridge in oxadiazole–π–triphenylamine conjugates.

4) π-Conjugation is disrupted by a neutral TTF unit.

Acknowledgment. C.S.W. was funded by EPSRC. L.O.P. acknowledges financial support from CENAMPS. We thank Professor J. A. K. Howard for the use of X-ray facilities and EPSRC for funding the improvement to the X-ray instrumentation.

Supporting Information Available: General experimental methods, synthetic details and characterization data for 1–14 and N,N-diphenyl-4-iodoaniline. X-ray crystallographic file for 8a, 9, 10g, 11, and 14a in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

JA0577600