Zespół Nanotechnologii Polimerów i Biomateriałów

NANOSTRUKTURY POLIMEROWE I SUPRAMOLEKULARNE – synteza, badania spektroskopowe i mikroskopowe

Szczepan Zapotoczny

Wytrzymałość na rozerwanie
5x większa niż dla stali
Wysoka elastyczność – możliwe rozciągnięcie nici o 30-300%
Typowe średnice nici: 150 - 3000 nm najcieńsze – 20 nm

Nanostruktura nici pajęczej

Superhydrofobowa powierzchnia

Nanostruktura powierzchni liścia lotosu

Kwiat i liść lotosu

Nanotechnologia w zastosowaniach

Powierzchnie "samoczyszczące się"

Kryształy fotoniczne

ADDRESS AND ADDRESS ADDR

"Kropki kwantowe" w diagnostyce medycznej

Samoorganizacja polimerów

Znane struktury liniowych kopolimerów triblokowych

Poli(A-block-B-block-C)

Ile możliwych struktur dla bardziej skomplikowanych makrocząsteczek??

Plan prezentacji

1. Synteza nowych kopolimerów amfifilowych

- Fotosensybilizator polimerowy zawierający chromofory porfirynowe (statystyczny i blokowy)
- Fotoaktywne kopolimery szczepione

2. Nanostrukturalne filmy polimerowe

- Tworzenie filmów metodą "warstwa po warstwie"
- Charakterystyka spektroskopowa i mikroskopowa filmów

3. (Nano)szczotki polimerowe

- Kontrolowana fotopolimeryzacja z powierzchni złota
- Nanolitografia nanodruty złota oraz szczepienie z nich szczotek polimerowych
- 4. Spektroskopia Sił w pojedynczych kompleksach supramolekularnych typu gość-gospodarz

Polielektrolity antenowe (PA)

- mery hydrofobowe chromofory aromatyczne (naftalen, karbazol, porfiryna etc.)
- mery hydrofilowe silne elektrolity (-SO₃-)
- Dobra rozpuszczalność w wodzie
- Duża hydrofobowość i wysoka lepkość wnętrza miceli
- Wydajna solubilizacja związków hydrofobowych (wsp. podziału K > 10¹⁰)
- Wydajne przeniesienie i migracja energii (efekt antenowy)

Polielektrolity antenowe -zastosowania

Światło zaabsorbowane przez chromofory polimerowe (fotouczulacze/fotosensybilizatory) jest przekazywane do solubilizowanych cząsteczek, które mogą ulegać dalej reakcjom fotochemicznym

NANOFOTOREAKTORY

- Fotodegradacja (dioksyny, pestycydy);
- Fotoutlenianie (skondensowane węglowodory aromatyczne);
- ♯ Fotosynteza (witamina D₃);

Fotoizomeryzacja (przegrupowanie foto-Friesa).

Kontrolowana polimeryzacja rodnikowa

Synteza PA zawierającego porfirynę

PSSS-block-Po

Dynamiczne rozpraszanie światła (DLS)

Właściwości PSSS-block-Po

Elektronowe widma absorpcyjne i emisyjne (zakres widzialny)

Obrazowanie mikroskopem konfokalnym

Fotosensybilizowane utlenianie rubrenu

Synteza kopolimerów szczepionych

I ETAP – szczepienie rodników nitroksylowych na łańcuchu polimeru

1. $Fe^{2+} + H_2O_2 \longrightarrow OH + OH^- + Fe^{3+}$ OH OH OH OH OH OH + **'OH** 2. OH OH OH OH OH OH + HTEMPO 3. CH₃ H₃C· H₃C CH3 OH

Synteza kopolimerów szczepionych

II ETAP – szczepienie łańcuchów bocznych metodą kontrolowanej polimeryzacji rodnikowej

Fotofizyka PVA-graft-VNp

Fluorescencyjne widma synchroniczne

Obliczone widma absorpcyjne

Nanostrukturalne Filmy Polimerowe

CELE BADAŃ:

 Immobilizacja PA na powierzchniach płaskich i cząstkach koloidalnych

Zbadanie konformacji zaadsorbowanych PA

Wielowarstwowe filmy polimerowe

Metoda tworzenia filmów "warstwa po warstwie" oparta na oddziaływaniach elektrostatycznych

(ang. "layer-by-layer")

Stosowane polielektrolity Jn +lm Jn **PDADMAC** SO₃ Na⁺

PSSS-block-VN(20 mol-%) PSSS-stat-VN(50 mol-%)

n

`NH₃⁺Cl⁻

Grubość filmów - elipsometria

Kopolimer statystyczny

Rozmiary micel polimerowych

DLS kopolimerów w roztworze

Film multiwarstwowy [PAH/PSS-block-VN]₂

"duży nacisk"

"mały nacisk"

odległość [nm]

Sondy fluorescencyjne - piren

Film z solubilizowanym perylenem

Przeniesienie energii

Model fotoaktywnego filmu micelarnego

Fotoaktywne mikrokapsuły/cząstki

$[PAH/PSSS-stat-VN]_2$ na cząstce SiO_2 (d = 3µm)

Nanoszczotki polimerowe

CELE BADAŃ:

 Opracowanie metody otrzymywania "inteligentnych" szczotek polimerowych na powierzchni złota (zastosowania biomedyczne)

 Nanoszczotki polimerowe jako platformy dla sensorów, nanoelektroniki itp.

Fotopolimeryzacja z INIFERTERem

Kontrolowana polimeryzacji z udziałem grupy pełniącej rolę **INIFERTER**a (ang.: INItiator-transFER-TERminator)

Fotoaktywna grupa ditiokarbaminian (DTCA) Samoorganizacja monowarstwy na powierzchni Au

Szczotki polimerowe

Szczepienie łańcuchów polimerowych z powierzchni złota -

kontrolowana fotopolimeryzacja

"stemplowanie" cząsteczek "inifertera"

fotopolimeryzacja

"stemplowane" szczotki polimerowe

Rysowanie nanodrutów ze złota

DPN – Dip-Pen Nanolithography

- Zredukowana powierzchnia krzemu
- HAuCl₄ atrament

w ≈ 200 nm Wilgotność 50%

w < 20 nm !!! 30%

Nanoszczotki z poli(kwasu metakrylowego)

Drut złoty z naniesionym fotoinicjatorem

Nanoszczotki z PMAA

Adhezja komórek linii MG63 (osteoblasty) na modyfikowanych szczotkach

COOH

соон

соон

COOH

COOH

COOH

COOH

Spektroskopia Sił dla układów supramolekularnych

CELE BADAŃ:

 Zbadanie oddziaływań międzycząsteczkowych w kompleksach supramolekularnych typu "gość-gospodarz" na poziomie pojedynczych par cząsteczek

 Korelacja mierzonych sił oddziaływań z wielkościami termodynamicznymi układów

Układ typu gość-gospodarz

Korelacja sił zrywających i entalpii swobodnej

Cząsteczki "gości"