Enthalpies of Reaction

- Enthalpy is an extensive property
- Magnitude of ΔH is directly related to the amount of reactant used up in a process.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\Lambda) \quad \Delta H=-890 \mathrm{~kJ}
$$

$$
2 \mathrm{CH}_{4}(g)+4 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(\Lambda) \quad \Delta H=-1780 \mathrm{~kJ}
$$

Enthalpies of Reactions

The enthalpy change for a reaction is equal in magnitude, but opposite in sign, to ΔH for the reverse reaction.

$$
\begin{gathered}
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\text { () } \\
\Delta H=-890 \mathrm{~kJ} \\
\mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\Lambda) \rightarrow \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \\
\Delta H=890 \mathrm{~kJ}
\end{gathered}
$$

Enthalpies of Reaction

- The enthalpy of reaction is dependant on the states of the reactants and products.

$$
\begin{array}{ll}
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g & \Delta H=-890 \mathrm{~kJ} \\
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H=-802 \mathrm{~kJ}
\end{array}
$$

$$
2 \mathrm{H}_{2} \mathrm{O}(I) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g) \Delta H=+88 \mathrm{~kJ}
$$

Hess's Law
 Result of enthalpy being a state function

Hess's law: if a reaction is carried out in a number of steps, ΔH for the overall reaction is the sum of ΔH for each individual step.

$$
\begin{array}{ll}
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H=-802 \mathrm{~kJ} \\
2 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H=-88 \mathrm{~kJ} \\
\hline \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H=-890 \mathrm{~kJ}
\end{array}
$$

Hess's Law Examples

- Calculate $\Delta \mathrm{H}$ for the reaction

$$
2 \mathrm{C}(s)+\mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(g)
$$

$$
\begin{array}{cr}
\mathrm{C}_{2} \mathrm{H}_{2}(g)+5 / 2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(I) & \Delta H=-1299.6 \mathrm{~kJ} \\
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) & \Delta H=-393.5 \mathrm{~kJ} \\
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g) & \Delta H=-285.8 \mathrm{~kJ}
\end{array}
$$

Hess's Law Examples

- Calculate $\Delta \mathrm{H}$ for the reaction

$$
\mathrm{NO}(g)+\mathrm{O}(g) \rightarrow \mathrm{NO}_{2}(g)
$$

$$
\begin{array}{cr}
\mathrm{NO}(g)+\mathrm{O}_{3}(g) \rightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) & \Delta H=-198.9 \mathrm{~kJ} \\
\mathrm{O}_{3}(g) \rightarrow 3 / 2 \mathrm{O}_{2}(g) & \Delta H=-142.3 \mathrm{~kJ} \\
\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{O}(g) & \Delta H=+495.0 \mathrm{~kJ}
\end{array}
$$

Enthalpy of Formation

- The enthalpy of formation (or heat of formation) ΔH_{f} is the enthalpy change associated with forming 1 mole of a compound from its constituent elements.

$$
\begin{gathered}
2 \mathrm{C}(\text { graphite })+3 \mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g}) \\
\Delta H_{\mathrm{rxn}}=\Delta H_{\mathrm{f}}=-277.7 \mathrm{~kJ}
\end{gathered}
$$

Note: only one mole of product formed!

- If there is more than one state for a substance, the more stable one is used.
- C(graphite) is more stable than C(diamond).

Standard Enthalpies

- Standard enthalpy, ΔH°, is the enthalpy measured when everything is in its standard state.
- $\Delta H_{\mathrm{f}}{ }^{\circ}$ - standard enthalpy of formation: $\Delta \mathrm{H}$ for forming one mole of product directly from its reactants with products and reactants in standard states.
- The standard enthalpy of formation of the most stable form of any element is zero.
- $\Delta H_{\text {vap }}{ }^{\circ}$ - standard enthalpy of vaporization: $\Delta \mathrm{H}$ for converting liquids to gases with products and reactants in standard states.
- $\Delta H_{\text {fus }}{ }^{\circ}$ - standard enthalpy of fusion: ΔH for melting solids.
- $\Delta H_{\text {sub }}{ }^{\circ}$ - standard enthalpy of sublimation: ΔH for converting solids to gases
- $\Delta H_{\text {comb }}{ }^{\circ}$ - enthalpy of combustion: ΔH for combusting a substance with oxygen)

Enthalpies of Reaction from enthalpies of formation

- We can use Hess' Law to calculate enthalpies of a reaction from enthalpies of formation.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
\Delta H_{r x n}^{\circ}=\sum n \Delta H_{f}^{\circ}(\text { products })-\sum m \Delta H_{f}^{\circ}(\text { reactants })
$$

Heat Capacity and Specific Heat

- Objects can emit or absorb heat, which causes an object to change temperature.
- An objects heat capacity is the amount of energy required to raise its temperature by 1 K (or $1^{0} \mathrm{C}$).
- The greater the heat capacity, the greater the heat required to produce a given rise in temperature.

Heat Capacity and Specific Heat

- For a pure substance, the heat capacity is usually given for a specified amount of 'stuff'.
- The heat capacity of 1 mol of a substance is the molar heat capacity.
- The heat capacity of 1 g of a substance is the specific heat capacity, or the specific heat.
- The specific heat is determined experimentally by measuring the temperature change, ΔT, that a known mass, m, of the substance undergoes when it gains or loses a specific quantity of heat, q.

$$
\begin{aligned}
\text { Specific heat } & =\frac{\text { (quantity of heat transferred })}{(\text { grams of substance }) \times(\text { temperature change })} \\
& =\frac{q}{m \times \Delta T}
\end{aligned}
$$

Specific Heat Example

- Calculate the specific heat of water if it takes 209 J of heat to increase the temperature of 50.0 g of water by 1.00 K .

Specific Heat Example

- If we know the specific heat of a substance (a physical property), then we can calculate the quantity of heat that a substance has gained or lost by using its specific heat together with its measured mass and temperature change.

$$
q=(\text { specific heat }) \times(\text { grams of substance }) \times T
$$

- How much heat is needed to warm 1 cup (250 g) of water from room temperature ($22^{\circ} \mathrm{C}$) to near its boiling point ($100^{\circ} \mathrm{C}$).
- What is the molar heat capacity of water?

Calorimetry

- Calorimetry is the measurement of heat flow. Calorimetry is done in a calorimeter, an apparatus that measures heat flow.
- Constant pressure calorimetry - pressure is held constant, usually open to atmosphere.
- Constant volume calorimetry - volume is held constant, used to study combustion reactions in a bomb calorimetry.

Constant Pressure Calorimetry

$$
\begin{aligned}
\Delta H_{\mathrm{rxn}} & =q_{\mathrm{rxn}}=-q_{\mathrm{soln}} \\
q_{\mathrm{soln}} & =(\text { specific heat of solution }) \\
& \times(\text { grams of solution }) \\
& \times \Delta T
\end{aligned}
$$

- Mixing 50 mL of 1.0 M HCl and 50 mL of 1.0 M NaOH , the temperature changes from $21.0^{\circ} \mathrm{C}$ to $27.5^{\circ} \mathrm{C}$. Calculate $\Delta \mathrm{H}_{\mathrm{rxn}}$. Assume the calorimeter does not lose any heat, take the density of the solution to be $1.0 \mathrm{~g} / \mathrm{mL}$, and take the specific heat of the solution to be $4.18 \mathrm{~J} / \mathrm{g}-\mathrm{K}$.

Constant Volume (Bomb) Calorimetry

$$
q_{\mathrm{rxn}}=-C_{\mathrm{cal}} \times \Delta T
$$

- Used to measure heats of combustion.

1. Determine the heat capacity of the calorimeter $C_{\text {cal }}$ by measuring the ΔT rise for a substance with a known heat of combustion (usually benzoic acid).
2. Repeat the experiment with an unknown.

