Chemical Stoichiometry

Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions.

Atomic Masses

Elements occur in nature as mixtures of isotopes

Carbon =

98.89% ¹²C

1.11% ¹³C

<0.01% ¹⁴C

Carbon atomic mass = 12.01

amu

Mass spectrometer

The Mole

The number equal to the number of carbon atoms in exactly 12 grams of pure ¹²C.

1 mole of anything = 6.022×10^{23} units of that thing

Avogadro's number equals $6.022 \times 10^{23} \text{ units}$

Molar Mass

A substance's molar mass (molecular weight) is the mass in grams of one mole of the compound.

 $CO_2 = 44.01$ grams per mole

Percent Composition

Mass percent of an element:

mass % =
$$\frac{\text{mass of element in compound}}{\text{mass of compound}} \times 100\%$$

For iron in iron (III) oxide, (Fe₂O₃)

mass % Fe =
$$\frac{111.69}{159.69} \times 100\% = 69.94\%$$

Formulas

```
molecular formula = (empirical formula)_n

[n = integer]
```

molecular formula = $C_6H_6 = (CH)_6$

empirical formula = CH

Empirical Formula Determination

- 1. Base calculation on 100 grams of compound.
- 2. Determine moles of each element in 100 grams of compound.
- 3. Divide each value of moles by the smallest of the values.
- 4. Multiply each number by an integer to obtain all whole numbers.

Chemical Equations

Chemical change involves a reorganization of the atoms in one or more substances.

Chemical Equation

A representation of a chemical reaction:

$$CH_4 + H_2O \rightarrow CO + 3H_2$$

reactants products

Chemical Equation

$$CH_4 + H_2O \rightarrow CO + 3H_2$$

The equation is balanced.

- 1 mole of methane reacts with 1 mole of water to produce
- 1 mole of carbon oxide and 3 moles of hydrogen

Calculating Masses of Reactants and Products

- 1. Balance the equation.
- 2. Convert mass to moles.
- 3. Set up mole ratios.
- 4. Use mole ratios to calculate moles of desired substituent.
- 5. Convert moles to grams, if necessary.

Limiting Reactant

The limiting reactant is the reactant that is consumed first, limiting the amounts of products formed.

Limiting Reactant

Let's start from the same reaction:

$$CH_4 + H_2O \rightarrow CO + 3H_2$$

reactants products

How does it work?

No problem, if they are mixed in stoichimetric ratio

But, if one reactant is in excess (H₂O) not all molecules react

Solving a Stoichiometry Problem

- 1. Balance the equation.
- 2. Convert masses to moles.
- 3. Determine which reactant is limiting.
- 4. Use moles of limiting reactant and mole ratios to find moles of desired product.
- 5. Convert from moles to grams.